Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 10: e1938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660182

RESUMO

Deep learning approaches are generally complex, requiring extensive computational resources and having high time complexity. Transfer learning is a state-of-the-art approach to reducing the requirements of high computational resources by using pre-trained models without compromising accuracy and performance. In conventional studies, pre-trained models are trained on datasets from different but similar domains with many domain-specific features. The computational requirements of transfer learning are directly dependent on the number of features that include the domain-specific and the generic features. This article investigates the prospects of reducing the computational requirements of the transfer learning models by discarding domain-specific features from a pre-trained model. The approach is applied to breast cancer detection using the dataset curated breast imaging subset of the digital database for screening mammography and various performance metrics such as precision, accuracy, recall, F1-score, and computational requirements. It is seen that discarding the domain-specific features to a specific limit provides significant performance improvements as well as minimizes the computational requirements in terms of training time (reduced by approx. 12%), processor utilization (reduced approx. 25%), and memory usage (reduced approx. 22%). The proposed transfer learning strategy increases accuracy (approx. 7%) and offloads computational complexity expeditiously.

2.
Biomed Res Int ; 2016: 8797438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376088

RESUMO

The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively.


Assuntos
Ecossistema , Processamento de Imagem Assistida por Computador , Algoritmos , Análise Discriminante , Geografia , Redes Neurais de Computação , Dinâmica não Linear , Paquistão , Fotografação , Tecnologia de Sensoriamento Remoto , Análise Espectral , Luz Solar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...