Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(4): 497-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961888

RESUMO

Goals of the investigation: This work aimed to evaluate the neuroprotective effects of zinc oxide (ZnO) nanoparticles in an experimental mouse model of rotenone-induced PD and investigate the therapeutic effects of ZnO, cobalt ferrite nanoparticles, and their combination. Methods: The levels of dopamine, norepinephrine, epinephrine, and serotonin were assessed using ELISA in the control and experimental model of PD mice. The dopa-decarboxylase expression level was assayed by real-time PCR. The expression level of tyrosine hydroxylase (TH) was assessed by western blot analysis. Results: Our data showed that levels of dopamine decreased in PD mice compared to normal. ZnO NP increased dopamine levels in normal and PD mice (37.5% and 29.5%; respectively, compared to untreated mice). However, ZnO NP did not cause any change in norepinephrine and epinephrine levels either in normal or in PD mice. Levels of serotonin decreased by 64.0%, and 51.1% in PD mice treated with cobalt ferrite and dual ZnO- cobalt ferrite NPs; respectively, when compared to PD untreated mice. The mRNA levels of dopa-decarboxylase increased in both normal and PD mice treated with ZnO NP. Its level decreased when using cobalt ferrite NP and the dual ZnO-cobalt ferrite NP when compared to untreated PD mice. A significant decrease in TH expression by 0.25, 0.68, and 0.62 folds was observed in normal mice treated with ZnO, cobalt ferrite, and the dual ZnO-cobalt ferrite NP as compared to normal untreated mice. In PD mice, ZnO administration caused a non-significant 0.15-fold decrease in TH levels while both cobalt ferrite and the dual ZnO-cobalt ferrite NP administration caused a significant 0.3 and 0.4-fold decrease respectively when compared to untreated PD mice. Principal conclusion: This study reveals that ZnO NPs may be utilized as a potential intervention to elevate dopamine levels to aid in PD treatment.


Assuntos
Modelos Animais de Doenças , Fármacos Neuroprotetores , Rotenona , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Camundongos , Fármacos Neuroprotetores/farmacologia , Masculino , Nanopartículas/química , Compostos Férricos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Cobalto/farmacologia
2.
Sci Rep ; 12(1): 5004, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322143

RESUMO

Saffron Crocus sativus L. (C. sativus) is a flower from the iridaceous family. Crocin, saffron's major constituent, and saffron have anti-oxidative and anti-inflammatory activities. In this work, the neuroprotective effects of saffron and crocin are being investigated in a repetitive mild traumatic brain injury (rmTBI) mouse model. A weight drop model setup was employed to induce mild brain injury in male albino BABL/c mice weighing 30-40 g. Saffron (50 mg/kg) and crocin (30 mg/kg) were administrated intraperitoneally 30 min before mTBI induction. Behavioral tests were conducted to assess behavioral deficits including the modified neurological severity score (NSS), Morris water maze (MWM), pole climb test, rotarod test, and adhesive test. The levels of TNF alpha (TNF-α), interferon-gamma (IFN-γ), myeloperoxidase activity (MPO), malonaldehyde (MDA), and reduced glutathione (GSH) were measured. Histological analysis of different brain parts was performed. Both saffron and crocin demonstrated marked improved neurological, cognitive, motor, and sensorimotor functions. Besides, both compounds significantly reduced the oxidative stress and inflammatory processes. No abnormal histological features were observed in any of the injured groups. Saffron extract and crocin provide a neuroprotective effect in a mouse model of rmTBI by decreasing oxidative stress, inflammatory responses, and behavioral deficits.


Assuntos
Concussão Encefálica , Crocus , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Concussão Encefálica/tratamento farmacológico , Carotenoides , Modelos Animais de Doenças , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia
3.
PLoS One ; 16(9): e0257211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506597

RESUMO

Traumatic brain injury (TBI) remains a major cause of morbidity and disability worldwide and a healthcare burden. TBI is an important risk factor for neurodegenerative diseases hallmarked by exacerbated neuroinflammation. Neuroinflammation in the cerebral cortex plays a critical role in secondary injury progression following TBI. The NOD-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a key player in initiating the inflammatory response in various central nervous system disorders entailing TBI. This current study aims to investigate the role of NLRP3 in repetitive mild traumatic brain injury (rmTBI) and identify the potential neuroprotective effect of saffron extract in regulating the NLRP3 inflammasome. 24 hours following the final injury, rmTBI causes an upregulation in mRNA levels of NLRP3, caspase-1, the apoptosis-associated speck-like protein containing a CARD (ASC), nuclear factor kappa B (NF-κB), interleukin-1Beta (IL-1ß), interleukin 18 (IL-18), nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1). Protein levels of NLRP3, sirtuin 1 (SIRT1), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), and neuronal nuclei (Neu N) also increased after rmTBI. Administration of saffron alleviated the degree of TBI, as evidenced by reducing the neuronal damage, astrocyte, and microglial activation. Pretreatment with saffron inhibited the activation of NLRP3, caspase-1, and ASC concurrent to reduced production of the inflammatory cytokines IL-1ß and IL-18. Additionally, saffron extract enhanced SIRT1 expression, NRF2, and HMOX1 upregulation. These results suggest that NLRP3 inflammasome activation and the subsequent inflammatory response in the mice cortex are involved in the process of rmTBI. Saffron blocked the inflammatory response and relieved TBI by activating detoxifying genes and inhibiting NLRP3 activation. The effect of saffron on the NLRP3 inflammasome may be SIRT1 and NF-κB dependent in the rmTBI model. Thus, brain injury biomarkers will help in identifying a potential therapeutic target in treating TBI-induced neurodegenerative diseases.


Assuntos
Crocus/química , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Animais , Western Blotting , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...