Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoscience ; 4(11-12): 178-188, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29344556

RESUMO

Angiosarcoma is a rare and generally fatal tumor composed of aberrant cells of endothelial origin. Because of its infrequency in humans, very little is known about the growth requirements of this vascular sarcoma. Unlike the rapidly proliferating solid tumors from which they are isolated from, many of the established angiosarcoma cell lines exhibit less than robust growth in culture and often fail to form tumors in xenograft models. In order to better understand angiosarcoma in vitro growth conditions, we focused on a singular aspect of their culture-adhesion to the extracellular matrix-in order to identify attachment substrates that may facilitate and/or enhance their growth in tissue culture. Our data indicates that the extracellular matrix of angiosarcomas contains similar protein compositions to that of non-diseased endothelial cells. Moreover, angiosarcoma cell lines exhibited strong attachment preference to substrates such as collagen I or fibronectin, and less preference to collagen IV, laminin, or tropoelastin. Growth on preferred extracellular matrix substrates promoted mitogenic signaling and increased proliferation of angiosarcoma cell lines. These findings provide insight that may lead to more successful in vitro growth of angiosarcoma cell lines.

2.
Biochemistry ; 52(8): 1446-55, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23368961

RESUMO

The aromatic amino acid hydroxylases tyrosine hydroxylase (TyrH) and phenylalanine hydroxylase (PheH) have essentially identical active sites; however, PheH is nearly incapable of hydroxylating tyrosine, while TyrH can readily hydroxylate both tyrosine and phenylalanine. Previous studies have indicated that Asp425 of TyrH is important in determining the substrate specificity of that enzyme [Daubner, S. C., Melendez, J., and Fitzpatrick, P. F. (2000) Biochemistry 39, 9652-9661]. Alanine-scanning mutagenesis of amino acids 423-427, a mobile loop containing Asp425, shows that only mutagenesis of Asp425 alters the activity of the enzyme significantly. Saturation mutagenesis of Asp425 results in large (up to 10(4)) decreases in the V(max) and V(max)/K(tyr) values for tyrosine hydroxylation, but only small decreases or even increases in the V(max) and V(max)/K(phe) values for phenylalanine hydroxylation. The decrease in the tyrosine hydroxylation activity of the mutant proteins is due to an uncoupling of tetrahydropterin oxidation from amino acid hydroxylation with tyrosine as the amino acid substrate. In contrast, with the exception of the D425W mutant, the extent of coupling of tetrahydropterin oxidation and amino acid hydroxylation is unaffected or increases with phenylalanine as the amino acid substrate. The decrease in the V(max) value with tyrosine as the substrate shows a negative correlation with the hydrophobicity of the amino acid residue at position 425. The results are consistent with a critical role of Asp425 being to prevent a hydrophobic interaction that results in a restricted active site in which hydroxylation of tyrosine does not occur.


Assuntos
Fenilalanina Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Hidroxilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pterinas/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...