Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(1): e0146182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761207

RESUMO

Thallium (81(217)Tl, Bismuth (83(217)Bi), Astatine (85(217)At), Francium (87(217)Fr), Actinium (89(217)Ac) and Protactinium (91(217)Pa) are of odd-proton numbers among the mass chain A = 217. In the present work, the half-lives and gamma transitions for the six nuclei have been studied and adopted based on the recently published interactions or unevaluated nuclear data sets XUNDL. The Q (α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012 as well. Moreover, the total conversion electrons as well as the K-Shell to L-Shell, L-Shell to M-Shell and L-Shell to N-Shell Conversion Electron Ratios have been calculated using BrIcc code v2.3. An updated skeleton decay scheme for each of the above nuclei has been presented here. The decay hindrance factors (HF) calculated using the ALPHAD program, which is available from Brookhaven National Laboratory's website, have been calculated for the α- decay data sets for (221)Fr-, (221)Ac- and (221)Pa-α-decays.


Assuntos
Partículas alfa , Prótons , Actínio/química , Astato/química , Bismuto/química , Elétrons , Frâncio/química , Raios gama , Meia-Vida , Probabilidade , Protoactínio/química , Radioisótopos , Síncrotrons , Tálio/química
2.
Health Phys ; 110(1): 50-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26606065

RESUMO

The effect of very low dose fast neutrons on the chromatin and DNA of rats' peripheral blood mononuclear cells (PBMC) and leukocytes has been studied in the present work using Fourier transform infrared (FTIR) and single-cell gel electrophoresis (comet assay). Fourteen female Wistar rats were used; seven were irradiated with neutrons of 0.9 cGy (Am-Be, 0.02 cGy h(-1)), and seven others were used as control. Second derivative and curve fitting were used to analyze the FTIR spectra. In addition, hierarchical cluster analysis (HCA) was used to classify the group spectra. Meanwhile, the tail moment and percentage of DNA in the tail were used as indicators to sense the breaking and the level of damage in DNA. The analysis of FTIR spectra of the PBMC of the irradiated group revealed a marked increase in the area of phosphodiesters of nucleic acids and the area ratios of RNA/DNA and phosphodiesters/carbohydrates. A sharp significant increase and decrease in the areas of RNA and DNA ribose were recorded, respectively. In the irradiated group, leukocytes with different tail lengths were observed. The distributions of tail moments and the percentage of DNA in the tail of irradiated groups were heterogeneous. The mean value of the percentages of DNA in the tail at 0.5 h post-irradiation represented low-level damage in the DNA. Therefore, one can conclude that very low dose fast neutrons might cause changes in the DNA of PBMC at the submolecular level. It could cause low-level damage, double-strand break, and chromatin fragmentation of DNA of leukocytes.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA/efeitos da radiação , DNA/análise , Nêutrons Rápidos , Leucócitos Mononucleares/citologia , Leucócitos/citologia , Animais , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Leucócitos/efeitos da radiação , Leucócitos Mononucleares/efeitos da radiação , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier
3.
PLoS One ; 10(10): e0139854, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436416

RESUMO

The effects of ionizing radiation on biological cells have been reported in several literatures. Most of them were mainly concerned with doses greater than 0.01 Gy and were also concerned with gamma rays. On the other hand, the studies on very low dose fast neutrons (VLDFN) are rare. In this study, we have investigated the effects of VLDFN on cell membrane and protein secondary structure of rat erythrocytes. Twelve female Wistar rats were irradiated with neutrons of total dose 0.009 Gy (241Am-Be, 0.2 mGy/h) and twelve others were used as control. Blood samples were taken at the 0, 4th, 8th, and 12th days postirradiation. Fourier transform infrared (FTIR) spectra of rat erythrocytes were recorded. Second derivative and curve fitting were used to analysis FTIR spectra. Hierarchical cluster analysis (HCA) was used to classify group spectra. The second derivative and curve fitting of FTIR spectra revealed that the most significant alterations in the cell membrane and protein secondary structure upon neutron irradiation were detected after 4 days postirradiation. The increase in membrane polarity, phospholipids chain length, packing, and unsaturation were noticed from the corresponding measured FTIR area ratios. This may be due to the membrane lipid peroxidation. The observed band shift in the CH2 stretching bands toward the lower frequencies may be associated with the decrease in membrane fluidity. The curve fitting of the amide I revealed an increase in the percentage area of α-helix opposing a decrease in the ß-structure protein secondary structure, which may be attributed to protein denaturation. The results provide detailed insights into the VLDFN effects on erythrocytes. VLDFN can cause an oxidative stress to the irradiated erythrocytes, which appears clearly after 4 days postirradiation.


Assuntos
Membrana Celular/efeitos da radiação , Eritrócitos/efeitos da radiação , Nêutrons Rápidos , Radiação Ionizante , Animais , Membrana Celular/metabolismo , Relação Dose-Resposta à Radiação , Eritrócitos/metabolismo , Feminino , Estresse Oxidativo , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína/efeitos da radiação , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...