Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1000224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518505

RESUMO

Crop yield prediction is of great importance for decision making, yet it remains an ongoing scientific challenge. Interactions among different genetic, environmental, and management factors and uncertainty in input values are making crop yield prediction complex. Building upon a previous work in which we coupled crop modeling with machine learning (ML) models to predict maize yields for three US Corn Belt states, here, we expand the concept to the entire US Corn Belt (12 states). More specifically, we built five new ML models and their ensemble models, considering the scenarios with and without crop modeling variables. Additional input values in our models are soil, weather, management, and historical yield data. A unique aspect of our work is the spatial analysis to investigate causes for low or high model prediction errors. Our results indicated that the prediction accuracy increases by coupling crop modeling with machine learning. The ensemble model overperformed the individual ML models, having a relative root mean square error (RRMSE) of about 9% for the test years (2018, 2019, and 2020), which is comparable to previous studies. In addition, analysis of the sources of error revealed that counties and crop reporting districts with low cropland ratios have high RRMSE. Furthermore, we found that soil input data and extreme weather events were responsible for high errors in some regions. The proposed models can be deployed for large-scale prediction at the county level and, contingent upon data availability, can be utilized for field level prediction.

2.
Front Plant Sci ; 12: 709008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408763

RESUMO

We investigate the predictive performance of two novel CNN-DNN machine learning ensemble models in predicting county-level corn yields across the US Corn Belt (12 states). The developed data set is a combination of management, environment, and historical corn yields from 1980 to 2019. Two scenarios for ensemble creation are considered: homogenous and heterogenous ensembles. In homogenous ensembles, the base CNN-DNN models are all the same, but they are generated with a bagging procedure to ensure they exhibit a certain level of diversity. Heterogenous ensembles are created from different base CNN-DNN models which share the same architecture but have different hyperparameters. Three types of ensemble creation methods were used to create several ensembles for either of the scenarios: Basic Ensemble Method (BEM), Generalized Ensemble Method (GEM), and stacked generalized ensembles. Results indicated that both designed ensemble types (heterogenous and homogenous) outperform the ensembles created from five individual ML models (linear regression, LASSO, random forest, XGBoost, and LightGBM). Furthermore, by introducing improvements over the heterogenous ensembles, the homogenous ensembles provide the most accurate yield predictions across US Corn Belt states. This model could make 2019 yield predictions with a root mean square error of 866 kg/ha, equivalent to 8.5% relative root mean square and could successfully explain about 77% of the spatio-temporal variation in the corn grain yields. The significant predictive power of this model can be leveraged for designing a reliable tool for corn yield prediction which will in turn assist agronomic decision makers.

3.
Sci Rep ; 11(1): 1606, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452349

RESUMO

This study investigates whether coupling crop modeling and machine learning (ML) improves corn yield predictions in the US Corn Belt. The main objectives are to explore whether a hybrid approach (crop modeling + ML) would result in better predictions, investigate which combinations of hybrid models provide the most accurate predictions, and determine the features from the crop modeling that are most effective to be integrated with ML for corn yield prediction. Five ML models (linear regression, LASSO, LightGBM, random forest, and XGBoost) and six ensemble models have been designed to address the research question. The results suggest that adding simulation crop model variables (APSIM) as input features to ML models can decrease yield prediction root mean squared error (RMSE) from 7 to 20%. Furthermore, we investigated partial inclusion of APSIM features in the ML prediction models and we found soil moisture related APSIM variables are most influential on the ML predictions followed by crop-related and phenology-related variables. Finally, based on feature importance measure, it has been observed that simulated APSIM average drought stress and average water table depth during the growing season are the most important APSIM inputs to ML. This result indicates that weather information alone is not sufficient and ML models need more hydrological inputs to make improved yield predictions.


Assuntos
Produção Agrícola , Aprendizado de Máquina , Zea mays/crescimento & desenvolvimento , Clima , Estados Unidos
4.
Front Plant Sci ; 11: 1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849688

RESUMO

The emergence of new technologies to synthesize and analyze big data with high-performance computing has increased our capacity to more accurately predict crop yields. Recent research has shown that machine learning (ML) can provide reasonable predictions faster and with higher flexibility compared to simulation crop modeling. However, a single machine learning model can be outperformed by a "committee" of models (machine learning ensembles) that can reduce prediction bias, variance, or both and is able to better capture the underlying distribution of the data. Yet, there are many aspects to be investigated with regard to prediction accuracy, time of the prediction, and scale. The earlier the prediction during the growing season the better, but this has not been thoroughly investigated as previous studies considered all data available to predict yields. This paper provides a machine leaning based framework to forecast corn yields in three US Corn Belt states (Illinois, Indiana, and Iowa) considering complete and partial in-season weather knowledge. Several ensemble models are designed using blocked sequential procedure to generate out-of-bag predictions. The forecasts are made in county-level scale and aggregated for agricultural district and state level scales. Results show that the proposed optimized weighted ensemble and the average ensemble are the most precise models with RRMSE of 9.5%. Stacked LASSO makes the least biased predictions (MBE of 53 kg/ha), while other ensemble models also outperformed the base learners in terms of bias. On the contrary, although random k-fold cross-validation is replaced by blocked sequential procedure, it is shown that stacked ensembles perform not as good as weighted ensemble models for time series data sets as they require the data to be non-IID to perform favorably. Comparing our proposed model forecasts with the literature demonstrates the acceptable performance of forecasts made by our proposed ensemble model. Results from the scenario of having partial in-season weather knowledge reveals that decent yield forecasts with RRMSE of 9.2% can be made as early as June 1st. Moreover, it was shown that the proposed model performed better than individual models and benchmark ensembles at agricultural district and state-level scales as well as county-level scale. To find the marginal effect of each input feature on the forecasts made by the proposed ensemble model, a methodology is suggested that is the basis for finding feature importance for the ensemble model. The findings suggest that weather features corresponding to weather in weeks 18-24 (May 1st to June 1st) are the most important input features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...