Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36255-36271, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959094

RESUMO

This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.

2.
J Taibah Univ Med Sci ; 19(3): 482-491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544870

RESUMO

Objective: Cancer is a major cause of death globally, and places a substantial burden on both patients and their caregivers. Frequent stress among caregivers often affects their mental well-being. This study was aimed at assessing anxiety and depression levels among informal caregivers of patients with cancer treated at selected tertiary hospitals in Nepal. An additional aim was to identify socio-demographic factors associated with these mental health outcomes. Methods: In this cross-sectional study, 383 informal caregivers were surveyed with the Hospital Anxiety and Depression Scale (HADS). Statistical analyses, including descriptive analysis and binary logistic regression, were conducted to explore associations with socio-demographic variables. Results: The mean age of participants was 36.1 ± 13.1 years, and 56.1% were 12-36 years old. Most participants were married (81.5%), were unemployed (66.6%), and had primary to secondary education (66.6%). The prevalence of moderate to severe anxiety (52%) and depression (45%) among caregivers was notable. Caregivers of patients treated at non-governmental hospitals were six times more likely (OR 6.3, 95% CI: [3.62-10.95], P = 0.001) to have anxiety and five times more likely (OR 5.3, 95% CI: [8.28-19.32], P = 0.001) to have depression. Conclusion: People who take care of patients with cancer in Nepal often feel substantial stress. Determining the causes of these feelings can aid in the creation of programs to support caregivers' mental health. Caring for mental well-being among caregivers is critical to achieving better cancer care and quality of life.

3.
Nanomaterials (Basel) ; 12(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683787

RESUMO

In this study, lead sulfide (PbS) nanoparticles were synthesized by the chemical precipitation method using Aloe Vera extract with PbCl2 and Thiourea (H2N-CS-NH2). The synthesized nanoparticles have been investigated using x-ray diffraction (XRD), UV-Vis, energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results confirm that the films are in the cubic phase. The crystallite size, lattice constant, micro-strain, dislocation density, optical bandgap, etc. have been determined using XRD and UV-Vis for investigating the quality of prepared nanoparticles. The possible application of these synthesized nanoparticles in the solar cells was investigated by fabricating the thin films on an FTO-coated and bare glass substrate. The properties of nanoparticles were found to be nearly retained in the film state as well. The experimentally found properties of thin films have been implemented for perovskite solar cell simulation and current-voltage and capacitance-voltage characteristics have been investigated. The simulation results showed that PbS nanoparticles could be a potential hole transport layer for high-efficiency perovskite solar cell applications.

4.
Biophys J ; 118(7): 1526-1536, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101713

RESUMO

Individual cells in a solution display variable uptake of nanomaterials, peptides, and nutrients. Such variability reflects their heterogeneity in endocytic capacity. In a recent work, we have shown that the endocytic capacity of a cell depends on its size and surface density of endocytic components (transporters). We also demonstrated that in MDA-MB-231 breast cancer cells, the cell-surface transporter density (n) may decay with cell radius (r) following the power rule n ∼ rα, where α ≈ -1. In this work, we investigate how n and r may independently contribute to the endocytic heterogeneity of a cell population. Our analysis indicates that the smaller cells display more heterogeneity because of the higher stochastic variations in n. By contrast, the larger cells display a more uniform uptake, reflecting less-stochastic variations in n. We provide analyses of these dependencies by establishing a stochastic model. Our analysis reveals that the exponent α in the above relationship is not a constant; rather, it is a random variable whose distribution depends on cell size r. Using Bayesian analysis, we characterize the cell-size-dependent distributions of α that accurately capture the particle uptake heterogeneity of MDA-MB-231 cells.


Assuntos
Teorema de Bayes , Transporte Biológico , Linhagem Celular Tumoral , Tamanho Celular
5.
PLoS Comput Biol ; 15(1): e1006706, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653502

RESUMO

Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors.


Assuntos
Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Domínios de Homologia de src
6.
Biophys J ; 116(2): 347-359, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30580920

RESUMO

The size of a cell is central to many functions, including cellular communication and exchange of materials with the environment. This modeling and experimental study focused on understanding how the size of a cell determines its ability to uptake nanometer-scale extracellular materials from the environment. Several mechanisms in the cell plasma membrane mediate cellular uptake of nutrients, biomolecules, and particles. These mechanisms involve recognition and internalization of the extracellular molecules via endocytic components, such as clathrin-coated pits, vacuoles, and micropinocytic vesicles. Because the demand for an external resource could be different for cells of different sizes, the collective actions of these various endocytic routes should also vary based on the cell size. Here, using a reaction-diffusion model, we analyze single-cell data to interrogate the one/one mapping between the size of the MDA-MB 231 breast cancer cells and their ability to uptake nanoparticles. Our analysis indicates that under both reaction- and diffusion-controlled regimes, cellular uptake follows a linear relationship with the cell radius. Furthermore, this linear dependency is insensitive to particle size variation within 20-200 nm range. This result is counterintuitive because the general perception is that cellular uptake is proportional to the cell volume (mass) or surface area and hence follow a cubic or square relationship with the cell radius. A further analysis using our model reveals a potential mechanism underlying this linear relationship.


Assuntos
Tamanho Celular , Endocitose , Nanopartículas/metabolismo , Linhagem Celular Tumoral , Vesículas Citoplasmáticas/metabolismo , Humanos , Dinâmica não Linear
7.
R Soc Open Sci ; 5(9): 180190, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30839725

RESUMO

Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...