Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(10): 2006-15, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25686032

RESUMO

In the current study, the heterogeneous reaction of NO2 with soot and biosoot surfaces was investigated in the dark and under illumination relevant to atmospheric conditions (J(NO2) = 0.012 s(-1)). A flat-flame burner was used for preparation and collection of soot samples from premixed flames of liquid fuels. The biofuels were prepared by mixing 20% v/v of (i) 1-butanol (CH3(CH2)3OH), (ii) methyl octanoate (CH3(CH2)6COOCH3), (iii) anhydrous diethyl carbonate (C2H5O)2CO and (iv) 2,5 dimethyl furan (CH3)2C4H2O additive compounds in conventional kerosene fuel (JetA-1). Experiments were performed at 293 K using a low-pressure flow tube reactor (P = 9 Torr) coupled to a quadrupole mass spectrometer. The initial and steady-state uptake coefficients, γ0 and γ(ss), respectively, as well as the surface coverage, N(s), were measured under dry and humid conditions. Furthermore, the branching ratios of the gas-phase products NO (∼80-100%) and HONO (<20%) were determined. Soot from JetA-1/2,5-dimethyl furan was the most reactive [γ0 = (29.1 ± 5.8) × 10(-6), γ(ss)(dry) = (9.09 ± 1.82) × 10(-7) and γ(ss)(5.5%RH) = (14.0 ± 2.8)(-7)] while soot from JetA-1/1-butanol [γ0 = (2.72 ± 0.544) × 10(-6), γ(ss)(dry) = (4.57 ± 0.914) × 10(-7), and γ(ss)(5.5%RH) = (3.64 ± 0.728) × 10(-7)] and JetA-1/diethyl carbonate [γ0 = (2.99 ± 0.598) × 10(-6), γ(ss)(dry) = (3.99 ± 0.798) × 10(-7), and γ(ss)(5.5%RH) = (4.80 ± 0.960) × 10(-7)] were less reactive. To correlate the chemical reactivity with the physicochemical properties of the soot samples, their chemical composition was analyzed employing Raman spectroscopy, NMR, and high-performance liquid chromatography. In addition, the Brunauer-Emmett-Teller adsorption isotherms and the particle size distributions were determined employing a Quantachrome Nova 2200e gas sorption analyzer. The analysis of the results showed that factors such as (i) soot mass collection rate, (ii) porosity of the particles formed, (iii) aromatic fraction, and (iv) pre-existence of nitro-containing species in soot samples (formed during the combustion process) can be used as indicators of soot reactivity with NO2.


Assuntos
Biocombustíveis , Dióxido de Nitrogênio/química , Processos Fotoquímicos , Fuligem/química , Propriedades de Superfície , Cinética , Modelos Moleculares , Conformação Molecular , Porosidade
2.
J Phys Chem A ; 118(34): 7007-16, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25101870

RESUMO

In the current study, the photochemistry of pyrene on solid Al2O3 surface was studied under simulated atmospheric conditions (pressure, 1 atm; temperature, 293 K; photon flux, JNO2 = 0.002-0.012 s(-1)). Experiments were performed using synthetic air or N2 as bath gas to evaluate the impact of O2 to the reaction system. The rate of pyrene photodegradation followed first order kinetics and was enhanced in the presence of O2, kd(synthetic air) = 7.8 ± 0.78 × 10(-2) h(-1) and kd(N2) = 1.2 ± 0.12 × 10(-2) h(-1) respectively, due to the formation of the highly reactive O2(•-) and HO(•) radical species. In addition, kd was found to increase linearly with photon flux. A detailed product study was realized and for the first time the gas/solid phase products of pyrene oxidation were identified using off-line GC-MS and HPLC analysis. In the gas phase, acetone, benzene, and various benzene-ring compounds were determined. In the solid phase, more than 20 photoproducts were identified and their kinetics was followed. Simulation of the concentration profiles of 1- and 2-hydroxypyrene provided an estimation of their yields, 33% and 5.8%, respectively, with respect to consumed pyrene, and their degradation rates were extracted. Finally, the mechanism of heterogeneous photodegradation of pyrene is discussed.

3.
J Phys Chem A ; 117(48): 12897-911, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24188183

RESUMO

The heterogeneous reactions between trace gases and aerosol surfaces have been widely studied over the past decades, revealing the crucial role of these reactions in atmospheric chemistry. However, existing knowledge on the reactivity of mixed aerosols is limited, even though they have been observed in field measurements. In the current study, the heterogeneous interaction of NO2 with solid surfaces of Al2O3 covered with kerosene soot was investigated under dark conditions and in the presence of UV light. Experiments were performed at 293 K using a low-pressure flow-tube reactor coupled with a quadrupole mass spectrometer. The steady-state uptake coefficient, γ(ss), and the distribution of the gas-phase products were determined as functions of the Al2O3 mass; soot mass; NO2 concentration, varied in the range of (0.2-10) × 10(12) molecules cm(-3); photon flux; and relative humidity, ranging from 0.0032% to 32%. On Al2O3/soot surfaces, the reaction rate was substantially increased, and the formation of HONO was favored compared with that on individual pure soot and pure Al2O3 surfaces. Uptake of NO2 was enhanced in the presence of H2O under both dark and UV irradiation conditions, and the following empirical expressions were obtained: γ(ss,BET,dark) = (7.3 ± 0.9) × 10(-7) + (3.2 ± 0.5) × 10(-8) × RH and γ(ss,BET,UV) = (1.4 ± 0.2) × 10(-6) + (4.0 ± 0.9) × 10(-8) × RH. Specific experiments, with solid sample preheating and doping with polycyclic aromatic hydrocarbons (PAHs), showed that UV-absorbing organic compounds significantly affect the chemical reactivity of the mixed mineral/soot surfaces. A mechanistic scheme is proposed, in which Al2O3 can either collect electrons, initiating a sequence of redox reactions, or prevent the charge-recombination process, extending the lifetime of the excited state and enhancing the reactivity of the organics. Finally, the atmospheric implications of the observed results are briefly discussed.


Assuntos
Óxido de Alumínio/química , Atmosfera/química , Dióxido de Nitrogênio/química , Fuligem/química , Raios Ultravioleta , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...