Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 27(4): 687-701, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33967456

RESUMO

The natural capacity of plants to endure salt stress is largely regulated by multifaceted structural and physio-biochemical modulations. Salt toxicity endurance mechanism of six ecotypes of Typha domingensis Pers. was evaluated by analyzing photosynthesis, ionic homeostasis, and stomatal physiology under different levels of salinity (0, 100, 200 and 300 mM NaCl). Typha populations were collected across different areas of Punjab, an eastern province in Pakistan. All studied attributes among ecotypes presented differential changes as compared to control. Different salt treatments not only affected gas exchange attributes but also shown significant modifications in stomatal anatomical changes. As compared to control, net photosynthetic rate, transpiration rate, total chlorophyll contents and carotenoids were increased by 111%, 64%, 103% and 171% respectively, in Sahianwala ecotype among all other ecotypes. Similarly, maximum water use efficiency (WUE), sub stomatal CO2 concentration, sodium (Na+) and chloride (Cl-) contents were observed in Sahianwala (191%, 93%, 168%, 158%) and Knotti (162%, 75%, 146%, 182%) respectively, as compared to the others ecotypes. Adaxial and abaxial stomatal areas remained stable in Sahianwala and Knotti. The highest abaxial stomatal density was observed in Gatwala ecotype (42 mm2) and maximum adaxial stomatal density was recorded in Sahianwala ecotype (43 mm2) at 300 mM NaCl salinity. The current study showed that Typha ecotypes responded varyingly to salinity in terms of photosynthesis attributes to avoid damages due to salinity. Overall, differential photosynthetic activity, WUE, and changes in stomatal attributes of Sahianwala and Knotti ecotypes contributed more prominently in tolerating salinity stress. Therefore, Typha domingensis is a potential species to be used to rehabilitate salt affected lands for agriculture and aquatic habitat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00963-x.

2.
Environ Pollut ; 286: 117316, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990051

RESUMO

Six ecotypes of Typha domingensis Pers. Jahlar (E1), Sheikhupura (E2), Sahianwala (E3), Gatwala (E4), Treemu (E5) and Knotti (E6) from different ecological regions were collected to evaluate the leaf anatomical and biochemical attributes under different levels of salinity and nickel stress viz; L0 (control), L1 (100 mM + 50 mg kg-1), L2 (200 mM + 100 mg kg-1) and L3 (300 mM + 150 mg kg-1). Presence of salt and Ni in rooting medium consistently affected growth, anatomical and physio-biochemical attributes in all Typha ecotypes. Discrete anatomical modifications among ecotypes such as reduced leaf thickness, increased parenchyma area, metaxylem cell area, aerenchyma formation and improved metaxylem vessels were recorded with increasing dose of salt and Ni. The minimum anatomical damages were recorded in E1 and E6 ecotypes. In all ecotypes, progressive perturbations in ionic homeostasis (Na+, K+, Cl-, N) due to salt and metal toxicity were evident along with reduction in photosynthetic pigments. Maximum enhancement in Catalase (CAT), Superoxide dismutase (SOD), Peroxidase (POD) and modulated Malondialdehyde (MDA) activity was recorded in E1 and E6 as compared to other ecotypes. Accumulation of large amounts of metabolites such as total soluble sugars, total free amino acids content in Jahlar, Knotti, Treemu and Sahianawala ecotypes under different levels of salt and Ni prevented cellular damages in T. domingensis Pers. The correlation analysis exhibited a close relationship among different levels of salinity and Ni with various plant attributes. PCA-Biplot verified our correlational analysis among various attributes of Typha ecotypes. An obvious separation of Typha characters in response to different salinity and Ni levels was exhibited by PC1. We recommend that genetic potential of T. domingensis Pers. To grow under salt and Ni stresses must be investigated and used for phytoremediation and reclamation of contaminated soil.


Assuntos
Typhaceae , Antioxidantes , Ecótipo , Níquel , Cloreto de Sódio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...