Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(26): 38698-38709, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379433

RESUMO

We demonstrate the controlled coherent transfer of topological interface states in a one-dimensional non-Hermitian chain of interacting Bose-Einstein condensates. The topological protection stems from a spatially patterned pump in an open-dissipative system. As a test bed setup of the proposed phenomenon, we consider a chain of coupled micropillars with embedded quantum wells, possessing exciton-polariton resonances. The transfer of an interface state is driven by spatially localised, adiabatic pump modulation in the vicinity of the interface state. The stochastic calculations prove the coherent nature of the interface state transfer. For appropriate system parameters the coherence degree is preserved after multiple transitions, paving the way towards long-range transfer of a coherent quantum state.

2.
Nat Commun ; 11(1): 3589, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680995

RESUMO

Highly nonlinear optical materials with strong effective photon-photon interactions are required for ultrafast and quantum optical signal processing circuitry. Here we report strong Kerr-like nonlinearities by employing efficient optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe2 at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at small photon fluxes due to phase space filling. We find the ratio of trion- to neutral exciton-polariton interaction strength is in the range from 10 to 100 in TMDC materials and that trion-polariton nonlinearity is comparable to that in other polariton systems. The results are in good agreement with a theory accounting for the composite nature of excitons and trions and deviation of their statistics from that of ideal bosons and fermions. Our findings open a way to scalable quantum optics applications with TMDCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...