Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Daru ; 20(1): 15, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23351643

RESUMO

BACKGROUND: In the recent years, there is an increasing attention to the using of Fe3O4 magnetite nanoparticles (MNPs) as drug delivery systems. Application of this nanoparticles could profit advantages of nanomedicine to enhance biological activity of pharmaceutical ingredients. METHODS: Fe3O4 MNPs were synthesised by a chemical method and characterized by transmission electron microscopy and energy-dispersive spectroscopy techniques. In the next step, docetaxel-coated Fe3O4 MNPs were prepared, using percipitation method. The surface chemistry of docetaxel-coated Fe3O4 MNPs as well as their thermal decomposition characteristics were examined using fourier transform infrared spectroscopy and thermogravimetric analyzer equipment, respectively. The cytotoxicity assay was conducted on 4 T1 breast cancer carsinoma by MTT assay to evaluate the possible in vitro antiproliferative effects of docetaxel-coated Fe3O4 MNPs. RESULTS: During precipitation process, docetaxel molecules were precipitated on the surface of Fe3O4 MNPs by the ratio of 3:100 w/w which indicates that each milligram of coated Fe3O4 MNPs averagely contained 30 µg pure docetaxel compound. Docetaxel showed aniproliferative effects against mentioned cell line. The higestest concentartion of docetaxel (80 µg/ml) caused about 80% cell death. However, the results demostarted that much lower amounts of docetaxel will be needed in combination of Fe3O4 MNPs to produce the potent antiproliferative effect compared to docetaxel alone. Dose response cytotoxicity assay of docetaxel-coated Fe3O4 MNPs against 4 T1 breast cancer cells showed that lower amount of docetaxel (0.6 µg/ml) can exhibit higher cytotoxic effect against this cancer cell line (90% cell death).

2.
Iran J Microbiol ; 3(1): 21-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22347578

RESUMO

BACKGROUND: Lactobacilli are the well known friendly bacteria for their probiotic activities against pathogens. The inhibitory activity of different strains of lactobacilli either obtained as commercial products or isolated from human feces was investigated against the clinical isolates of Pseudomonas aeruginosa. The isolates were selected as the most resistant strains when challenged with anti-pseudomonal antibiotics already in clinical practice. MATERIALS AND METHODS: Both the plate spot test as well as the agar cup method were used for screening of Lactobacillus strains against Pseudomonas aeruginosa. RESULTS: A Lactobacillus acidophilus strain isolated from feces of an Iranian child showed a strong anti-pseudomonal activity (90 percent after 72h incubation) against the multi-drug resistant clinical isolates while a Lactobacillus reuteri strain isolated from a commercial oral product resulted in relatively weak response and a Lactobacillus acidophilus strain isolated from a commercial vaginal product did not show any inhibitory activity. In a kinetic study the lactobacillus sensitive Pseudomonas aeruginosa showed a significant bacteriostatic activity in vitro in the presence of lactobacillus supernatants. CONCLUSION: Some lactobacilli exhibit significant inhibitory activity against the multidrug resistant clinical isolates of Pseudomonas aeruginosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...