Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927322

RESUMO

Rice (Oryza sativa L.) production is highly susceptible to temperature fluctuations, which can significantly reduce plant growth and development at different developmental stages, resulting in a dramatic loss of grain yield. Over the past century, substantial efforts have been undertaken to investigate the physiological, biochemical, and molecular mechanisms of cold stress tolerance in rice. This review aims to provide a comprehensive overview of the recent developments and trends in this field. We summarized the previous advancements and methodologies used for identifying cold-responsive genes and the molecular mechanisms of cold tolerance in rice. Integration of new technologies has significantly improved studies in this era, facilitating the identification of essential genes, QTLs, and molecular modules in rice. These findings have accelerated the molecular breeding of cold-resistant rice varieties. In addition, functional genomics, including the investigation of natural variations in alleles and artificially developed mutants, is emerging as an exciting new approach to investigating cold tolerance. Looking ahead, it is imperative for scientists to evaluate the collective impacts of these novel genes to develop rice cultivars resilient to global climate change.

2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069299

RESUMO

Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho do Órgão , Melhoramento Vegetal , Hormônios/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas
3.
Environ Sci Pollut Res Int ; 29(31): 47254-47266, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182336

RESUMO

Phthalates are multifunctional compounds with extensive applications and emerging environmental pollutants. Due to their ubiquity in the environment and unavoidable exposure to humans, concerns have been voiced about public health dangers. This study was aimed to explore the diethyl phthalate (DEP) toxicity and the potential protective effect of black coffee in female Swiss albino mice. Four-week-old mice, weighing 12 ± 1 g were segregated into five groups (n = 10), designated as G-I (without any treatment), G-II (treated with corn oil), G-III (exposed to 1.5 mg/g body wt. (B.W.) DEP), G-IV (received 2 µg/g B.W coffee), and G-V (co-administrated with 1.5 mg/g DEP and 2 µg/g B.W coffee). Before dose administration, the coffee extract was assessed for its antioxidant potential through FRAP, TPC, and GC-MS analyses. Respective phthalates/coffee doses were administrated orally, once a day for 8 weeks consecutively starting from the prepubescent stage. After 56 days, mice were acclimated for 4 days then dissected. Morphological assessments showed an irregular shape of the ovaries in DEP-treated mice as compared to the control. The average bodyweight of DEP-intoxicated mice (p ≤ 0.05) increased notably against control, while DEP plus coffee group showed a regular gain in the average weight of mice. The gonado-somatic index showed non-significant variations among all groups. Micrometric studies showed that the diameter of secondary follicles (115 µm) in the ovaries of DEP-exposed mice (p ≤ 0.001) decreased significantly as compared to control (204 µm); conversely, follicular diameter in the coffee control group (248) increased significantly. Serum FSH and LH levels were significantly increased in DEP-exposed mice with a noteworthy decrease in estrogen level while hormonal levels of all other groups were comparable to control. Histological sections of DEP-exposed mice ovaries showed anatomical disruptions contrary to other groups, which were comparable with control. Antioxidant potential was checked in ovaries homogenates; FRAP values showed a notable decrease in DEP group in comparison with the control group, in contrast to G-V, when DEP was co-administrated with coffee. This study concluded that black coffee has protective effect, against DEP-instigated reproductive toxicity in Swiss albino female mice.


Assuntos
Cistos Ovarianos , Neoplasias Ovarianas , Ácidos Ftálicos , Animais , Antioxidantes , Café , Feminino , Gonadotropinas , Humanos , Camundongos , Ácidos Ftálicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...