Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Res ; 16(1): 45-58, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19001483

RESUMO

Degradation of mRNA is one of the key processes that control the steady-state level of gene expression. However, the rate of mRNA decay for the majority of genes is not known. We successfully obtained the rate of mRNA decay for 19 977 non-redundant genes by microarray analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Median estimated half-life was 7.1 h and only <100 genes, including Prdm1, Myc, Gadd45 g, Foxa2, Hes5 and Trib1, showed half-life less than 1 h. In general, mRNA species with short half-life were enriched among genes with regulatory functions (transcription factors), whereas mRNA species with long half-life were enriched among genes related to metabolism and structure (extracellular matrix, cytoskeleton). The stability of mRNAs correlated more significantly with the structural features of genes than the function of genes: mRNA stability showed the most significant positive correlation with the number of exon junctions per open reading frame length, and negative correlation with the presence of PUF-binding motifs and AU-rich elements in 3'-untranslated region (UTR) and CpG di-nucleotides in the 5'-UTR. The mRNA decay rates presented in this report are the largest data set for mammals and the first for ES cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Células Cultivadas , Bases de Dados Genéticas , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética
2.
Gene Expr Patterns ; 8(3): 181-98, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18178135

RESUMO

We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
3.
Dev Biol ; 307(2): 446-59, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17560561

RESUMO

Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin and genetic background. These data indicate that ESCs and EGCs are indistinguishable based on global gene expression patterns alone. On the other hand, a detailed comparison between a group of ESC lines and a group of EGC lines identified 20 signature genes whose average expression levels were consistently higher in ESC lines, and 84 signature genes whose average expression levels were consistently higher in EGC lines, irrespective of mouse strains. Similar analysis identified 250 signature genes whose average expression levels were consistently higher in a group of 129 cell lines, and 337 signature genes whose average expression levels were consistently higher in a group of C57BL/6 cell lines. Although none of the genes was exclusively expressed in either ESCs versus EGCs or 129 versus C57BL/6, in combination these signature genes provide a reliable separation and identification of each cell type. Differentiation-promoting conditions also revealed some minor differences between the cell lines. For example, in the presence of RA, EGCs showed a lower expression of muscle- and cardiac-related genes and a higher expression of gonad-related genes than ESCs. Taken together, the results provide a rich source of information about the similarities and differences between ESCs and EGCs as well as 129 lines and C57BL/6 lines. Such information will be crucial to our understanding of pluripotent stem cells. The results also underscore the importance of studying multiple cell lines from different strains when making comparisons based on gene expression analysis.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Fator Inibidor de Leucemia/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Células-Tronco Pluripotentes/efeitos dos fármacos , Especificidade da Espécie , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...