Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Digit Health ; 9: 20552076221149296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683951

RESUMO

Artificial Intelligent (AI) applications in e-health have evolved considerably in the last 25 years. To track the current research progress in this field, there is a need to analyze the most recent trend of adopting AI applications in e-health. This bibliometric analysis study covers AI applications in e-health. It differs from the existing literature review as the journal articles are obtained from the Scopus database from its beginning to late 2021 (25 years), which depicts the most recent trend of AI in e-health. The bibliometric analysis is employed to find the statistical and quantitative analysis of available literature of a specific field of study for a particular period. An extensive global literature review is performed to identify the significant research area, authors, or their relationship through published articles. It also provides the researchers with an overview of the work evolution of specific research fields. The study's main contribution highlights the essential authors, journals, institutes, keywords, and states in developing the AI field in e-health.

2.
Sci Rep ; 12(1): 22562, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581655

RESUMO

Smart grids and smart homes are getting people's attention in the modern era of smart cities. The advancements of smart technologies and smart grids have created challenges related to energy efficiency and production according to the future demand of clients. Machine learning, specifically neural network-based methods, remained successful in energy consumption prediction, but still, there are gaps due to uncertainty in the data and limitations of the algorithms. Research published in the literature has used small datasets and profiles of primarily single users; therefore, models have difficulties when applied to large datasets with profiles of different customers. Thus, a smart grid environment requires a model that handles consumption data from thousands of customers. The proposed model enhances the newly introduced method of Neural Basis Expansion Analysis for interpretable Time Series (N-BEATS) with a big dataset of energy consumption of 169 customers. Further, to validate the results of the proposed model, a performance comparison has been carried out with the Long Short Term Memory (LSTM), Blocked LSTM, Gated Recurrent Units (GRU), Blocked GRU and Temporal Convolutional Network (TCN). The proposed interpretable model improves the prediction accuracy on the big dataset containing energy consumption profiles of multiple customers. Incorporating covariates into the model improved accuracy by learning past and future energy consumption patterns. Based on a large dataset, the proposed model performed better for daily, weekly, and monthly energy consumption predictions. The forecasting accuracy of the N-BEATS interpretable model for 1-day-ahead energy consumption with "day as covariates" remained better than the 1, 2, 3, and 4-week scenarios.


Assuntos
Algoritmos , Sistemas Computacionais , Humanos , Fatores de Tempo , Cidades , Aprendizado de Máquina , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...