Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197194

RESUMO

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Senescência Vegetal , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal/genética , Plantas Geneticamente Modificadas , Fatores de Tempo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transporte Biológico
2.
New Phytol ; 240(3): 1259-1274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36918501

RESUMO

Eggplant (Solanum melongena) suffers severe losses due to a multi-insecticide-resistant lepidopteran pest, shoot and fruit borer (SFB, Leucinodes orbonalis). Heavy and combinatorial application of pesticides for SFB control renders eggplant risky for human consumption. We observed that gravid SFB females do not oviposit on Himalayan eggplant variety RC-RL-22 (RL22). We hypothesized that RL22 contained an antixenosis factor. Females' behavior indicated that the RL22 cue they perceived was olfactory. To identify it, leaf volatile blends of seven eggplant varieties were profiled using solid phase microextraction and gas chromatography mass spectrometry. Seven RL22-specific compounds were detected in the plant headspace. In choice assays, oviposition deterrence efficacies of these candidate compounds were independently tested by their foliar application on SFB-susceptible varieties. Complementation of geraniol, which was exclusively found in RL22, reduced oviposition (> 90%). To validate geraniol's role in RL22's SFB-deterrence, we characterized RL22's geraniol synthase and silenced its gene in planta, using virus-induced gene silencing. Geraniol biosynthesis suppression rendered RL22 SFB-susceptible; foliar geraniol application on the geraniol synthase-silenced plants restored oviposition deterrence. We infer that geraniol is RL22's SFB oviposition deterrent. The use of natural compounds like geraniol, which influence the chemical ecology of oviposition, can reduce the load of hazardous synthetic larvicides.


Assuntos
Mariposas , Solanum melongena , Feminino , Animais , Humanos , Frutas , Oviposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...