Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 608(7921): 45-49, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879555

RESUMO

The a.c. Josephson effect predicted in 19621 and observed experimentally in 19632 as quantized 'voltage steps' (the Shapiro steps) from photon-assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the a.c. coherent quantum phase slip (CQPS), photon-assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantized 'current steps'3,4. The basic physical significance of the a.c. CQPS is also complemented by practical importance in future current standards, a missing element for closing the quantum metrology triangle5,6. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires 7. However, the direct flat current steps in superconductors, the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present set-up bandwidth. The current steps were theoretically predicted in small Josephson junctions 30 years ago5. However, unavoidable broadening in Josephson junctions prevents their direct experimental observation8,9. We solve this problem by placing a thin NbN nanowire in an inductive environment.

2.
Phys Rev Lett ; 120(22): 223603, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906147

RESUMO

We realize the quantum regime of a surface acoustic wave (SAW) resonator by demonstrating vacuum Rabi mode splitting due to interaction with a superconducting artificial atom. Reaching the quantum regime is physically difficult and technologically challenging since SAW devices consist of large arrays of narrow metal strips. This work paves the way for realizing analogues of quantum optical phenomena with phonons and can be useful in on-chip quantum electronics.

3.
Nano Lett ; 17(11): 6516-6519, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991481

RESUMO

We study operation of a new device, the superconducting differential double contour interferometer (DDCI), in the application for the ultrasensitive detection of magnetic flux and for digital read out of the state of the superconducting flux qubit. DDCI consists of two superconducting contours weakly coupled by Josephson junctions. In such a device a change of the critical current, caused by an external magnetic flux or a nearby electric current, happens in a step-like manner when the angular momentum quantum number changes by one in one of the two contours. With a choice of parameters, the DDCI may outperform traditional superconducting quantum interference devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...