Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831508

RESUMO

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Assuntos
Filamentos Intermediários , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermediários/metabolismo , Animais , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/química
2.
Biomedicines ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551950

RESUMO

Actin cytoskeleton is an essential component of living cells and plays a decisive role in many cellular processes. In mammals, ß- and γ-actin are cytoplasmic actin isoforms in non-muscle cells. Despite minor differences in the amino acid sequence, ß- and γ-actin localize in different cell structures and perform different functions. While cytoplasmic ß-actin is involved in many intracellular processes including cell contraction, γ-actin is responsible for cell mobility and promotes tumor transformation. Numerous studies demonstrate that ß- and γ-actin are spatially separated in the cytoplasm of fibroblasts and epithelial cells; this separation is functionally determined. The spatial location of ß/γ-actin in endothelial cells is still a subject for discussion. Using super-resolution microscopy, we investigated the ß/γ-actin colocalization in endotheliocytes and showed that the ß/γ-actin colocalization degree varies widely between different parts of the marginal regions and near the cell nucleus. In the basal cytoplasm, ß-actin predominates, while the ratio of isoforms evens out as it moves to the apical cytoplasm. Thus, our colocalization analysis suggests that ß- and γ-actin are segregated in the endotheliocyte cytoplasm. The segregation is greatly enhanced during cell lamella activation in the nocodazole-induced endothelial barrier dysfunction, reflecting a different functional role of cytoplasmic actin isoforms in endothelial cells.

3.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555175

RESUMO

Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Proteína Huntingtina/genética
4.
Biomedicines ; 10(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35453578

RESUMO

The endothelium plays an important role in the transcytosis of lipoproteins. According to one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis, and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules, actin, and intermediate filaments), are involved in its development. In contrast to the proteins of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated. Here we discuss current concepts of the participation of vimentin filaments in the vital activity and functioning of endothelial cells, as well as the role of vimentin in the development of inflammatory processes and atherosclerosis.

5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360602

RESUMO

The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle ß-cytoplasmic and γ-cytoplasmic actins (ß-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the ß/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Células Endoteliais/fisiologia , Animais , Células Endoteliais/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...