Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376252

RESUMO

We propose and demonstrate dendrimer-based coatings for a sensitive biochip surface that enhance the high-performance sorption of small molecules (i.e., biomolecules with low molecular weights) and the sensitivity of a label-free, real-time photonic crystal surface mode (PC SM) biosensor. Biomolecule sorption is detected by measuring changes in the parameters of optical modes on the surface of a photonic crystal (PC). We describe the step-by-step biochip fabrication process. Using oligonucleotides as small molecules and PC SM visualization in a microfluidic mode, we show that the PAMAM (poly-amidoamine)-modified chip's sorption efficiency is almost 14 times higher than that of the planar aminosilane layer and 5 times higher than the 3D epoxy-dextran matrix. The results obtained demonstrate a promising direction for further development of the dendrimer-based PC SM sensor method as an advanced label-free microfluidic tool for detecting biomolecule interactions. Current label-free methods for small biomolecule detection, such as surface plasmon resonance (SPR), have a detection limit down to pM. In this work, we achieved for a PC SM biosensor a Limit of Quantitation of up to 70 fM, which is comparable with the best label-using methods without their inherent disadvantages, such as changes in molecular activity caused by labeling.

2.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012173

RESUMO

Here, we propose and study several types of quartz surface coatings designed for the high-performance sorption of biomolecules and their subsequent detection by a photonic crystal surface mode (PC SM) biosensor. The deposition and sorption of biomolecules are revealed by analyzing changes in the propagation parameters of optical modes on the surface of a photonic crystal (PC). The method makes it possible to measure molecular and cellular affinity interactions in real time by independently recording the values of the angle of total internal reflection and the angle of excitation of the surface wave on the surface of the PC. A series of dextrans with various anchor groups (aldehyde, carboxy, epoxy) suitable for binding with bioligands have been studied. We have carried out comparative experiments with dextrans with other molecular weights. The results confirmed that dextran with a Mw of 500 kDa and anchor epoxy groups have a promising potential as a matrix for the detection of proteins in optical biosensors. The proposed approach would make it possible to enhance the sensitivity of the PC SM biosensor and also permit studying the binding process of low molecular weight molecules in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...