Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 124(19): 3992-4001, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309948

RESUMO

Energy transfer in multichromophoric molecules can be affected by coherences that are induced by the electronic and vibrational couplings between chromophore units. Coherent electron-vibrational dynamics can persist at the subpicosecond time scale even at room temperature. Furthermore, wave-like localized-delocalized motions of the electronic wave function can be modulated by vibrations that actively participate in the intermolecular energy transfer process. Herein, nonadiabatic excited state molecular dynamics simulations have been performed on a rigid synthetic heterodimer that has been proposed as a simplified model for investigating the role and mechanism of coherent energy transfer in multichromophoric systems. Both surface hopping (SH) and Ehrenfest approaches (EHR) have been considered. After photoexcitation of the system at room temperature, EHR simulations reveal an ultrafast beating of electronic populations between the two lowest electronic states. These oscillations are not observed at low temperature and have vibrational origins. Furthermore, they cannot be reproduced using SH approach. This periodic behavior of electronic populations induces oscillations in the spatial localization of the electronic transition density between monomers. Vibrations whose frequencies are near-resonant with energy difference between the two lowest electronic excited states are in the range of the electronic population beating, and they are the ones that contribute the most to the coherent dynamics of these electronic transitions.

2.
J Chem Phys ; 150(12): 124301, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927877

RESUMO

The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales.

3.
J Chem Phys ; 148(18): 184113, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29764128

RESUMO

In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

4.
J Chem Phys ; 120(12): 5608-15, 2004 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15267437

RESUMO

We extend the technique of quantum propagation on a grid of trajectory guided coupled coherent states to simulate experimental absorption spectra. The approach involves calculating the thermally averaged dipole moment autocorrelation function by means of quantum propagation in imaginary time. The method is tested on simulation of the far infrared spectrum of water trimer based on a three-dimensional model potential. Results are in good agreement with experiment and with other calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...