Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 732: 139249, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438185

RESUMO

This study tests for the first time the long-term effects of pumping saline groundwater (SGW) as feed for a desalination plant on a coastal aquifer. Field measurements combined with 3D modeling of the hydrological conditions were conducted to examine the effects of SGW pumping on the aquifer system. The plant is next to the city of Almeria (South East Spain) and has been operating since 2006. It uses multiple beach wells along the shore to draw SGW from beneath the fresh-saline water interface (FSI) of the Andarax coastal aquifer. The long-term impact of the intensive pumping on the aquifer was assessed by electrical conductivity profiles in three observation wells during 12 years of pumping. The FSI deepened with continuous pumping, reaching a decrease of ~50 m in the observation well closest to the pumping wells. A calibrated three-dimensional numerical model of the Andarax aquifer replicates the freshening of the aquifer due to the continuous pumping, resulting in a salinity decrease of ~16% in the vicinity of the wells. The salinity decrease stabilizes at 17%, and the model predicts no further significant decrease in salinity for additional 20 years. Submarine groundwater discharge is lowered due to the SGW pumping and ~19,000,000 m3 of freshwater has not lost to the sea during the 12 years of pumping with a rate of ~1,100,000 m3 yr-1 after 6 years of pumping. After pumping cessation, hydrostatic equilibrium would take about 20 years to recover. This work presents the complex dynamics of the FSI due to the SGW pumping for desalination in the first real long-term scenario. It shows by combining field work and numerical modeling, a significant freshening of the aquifer by pumping SGW, emphasizing an additional advantage and the effectiveness of this use as a negative hydraulic barrier against seawater intrusion.

2.
Water Res ; 156: 46-57, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30904710

RESUMO

Over the past few decades, seawater desalination has become a necessity for freshwater supply in many countries worldwide, particularly in arid and semi-arid regions. One potentially high-quality feed water for desalination is saline groundwater (SGW) from coastal aquifers, which has lower fouling propensity than seawater. This study examines the effect of pumping SGW from a phreatic coastal aquifer on fresh groundwater, particularly on the dynamics of the fresh-saline water interface (FSI). Initially, we constructed a 3D finite-element model of a phreatic coastal aquifer by using the FEFLOW software, which solves the coupled variable density groundwater flow and solute transport equations. Then, we compared and validated the results of the model to those of a field-scale pumping test. The model indicates that pumping SGW from a coastal aquifer freshens the aquifer and rehabilitates parts that were salinized due to seawater intrusion - an effect that increases with increasing pumping rate. In addition, when simultaneously pumping fresh groundwater further inland and SGW from below the FSI, the freshening effect is less pronounced and the salinity of the aquifer is more stable. In line with the results of the model, the field experiment revealed that salinity in the observation well decreases over the course of pumping. Taken together, our findings demonstrate that, in addition to providing a high-quality source feed water for desalination, pumping SGW does not salinize the aquifer and even rehabilitates it by negating the effect of seawater intrusion. These findings are important for planning shoreline desalination facilities and for managing arid coastal regions with lack of water supply and over exploited aquifers.


Assuntos
Água Subterrânea , Água Doce , Salinidade , Água do Mar , Abastecimento de Água
3.
Ground Water ; 47(1): 49-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18823401

RESUMO

In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/análise , Modelos Teóricos , Água do Mar/análise , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...