Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 13(3): 494-504, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34674144

RESUMO

We have previously demonstrated that deletion of activin receptor-like kinase 1 (Alk1) or endoglin in a fraction of endothelial cells (ECs) induces brain arteriovenous malformations (bAVMs) in adult mice upon angiogenic stimulation. Here, we addressed three related questions: (1) could Alk1- mutant bone marrow (BM)-derived ECs (BMDECs) cause bAVMs? (2) is Alk1- ECs clonally expended during bAVM development? and (3) is the number of mutant ECs correlates to bAVM severity? For the first question, we transplanted BM from PdgfbiCreER;Alk12f/2f mice (EC-specific tamoxifen-inducible Cre with Alk1-floxed alleles) into wild-type mice, and then induced bAVMs by intra-brain injection of an adeno-associated viral vector expressing vascular endothelial growth factor and intra-peritoneal injection of tamoxifen. For the second question, clonal expansion was analyzed using PdgfbiCreER;Alk12f/2f;confetti+/- mice. For the third question, we titrated tamoxifen to limit Alk1 deletion and compared the severity of bAVM in mice treated with low and high tamoxifen doses. We found that wild-type mice with PdgfbiCreER;Alk12f/2f BM developed bAVMs upon VEGF stimulation and Alk1 gene deletion in BMDECs. We also observed clusters of ECs expressing the same confetti color within bAVMs and significant proliferation of Alk1- ECs at early stage of bAVM development, suggesting that Alk1- ECs clonally expanded by local proliferation. Tamoxifen dose titration revealed a direct correlation between the number of Alk1- ECs and the burden of dysplastic vessels in bAVMs. These results provide novel insights for the understanding of the mechanism by which a small fraction of Alk1 or endoglin mutant ECs contribute to development of bAVMs.


Assuntos
Receptores de Activinas Tipo II , Células Endoteliais , Malformações Arteriovenosas Intracranianas , Receptores de Activinas Tipo II/genética , Animais , Medula Óssea/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Endoglina/genética , Endoglina/metabolismo , Células Endoteliais/metabolismo , Malformações Arteriovenosas Intracranianas/genética , Camundongos , Tamoxifeno/metabolismo , Tamoxifeno/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Brain Hemorrhages ; 2(1): 49-56, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34541474

RESUMO

Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-ß (PDGFR-ß), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.

3.
J Cereb Blood Flow Metab ; 41(9): 2162-2173, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33641516

RESUMO

Tibia fracture (BF) enhances stroke injury and post-stroke memory dysfunction in mouse. Reduction of neuroinflammation by activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) reduced acute neuronal injury and sensorimotor dysfunction in mice with BF 1-day after stroke. We hypothesize that reduction of neuroinflammation by activation of α-7 nAchR improves long-term memory function of mice with BF 6-h before stroke. The mice were randomly assigned to saline, PHA-568487 (α-7 nAchR agonist) and methyllycaconitine (antagonist) treatment groups. The sensorimotor function was tested by adhesive removal and corner tests at 3 days, the memory function was tested by Y-maze test weekly for 8 weeks and novel objective recognition test at 8 weeks post-injuries. We found PHA-568487 treatment reduced, methyllycaconitine increased the number of CD68+ cells in the peri-infarct and hippocampal regions, neuronal injury in the infarct region, sensorimotor and long-term memory dysfunctions. PHA-568487 treatment also reduced, while methyllycaconitine treatment increased atrophy of hippocampal granule cell layer and white matter damage in the striatum. In addition, PHA-568487 treatment increased neuron proliferation in granule cell layer. Our data indicated that reduction of neuroinflammation through activation of α-7 nAchR decreased neuronal damage, sensorimotor and long-term memory dysfunction of mice with BF shortly before stroke.


Assuntos
Fraturas Ósseas/etiologia , Inflamação/terapia , Memória de Longo Prazo/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Feminino , Fraturas Ósseas/patologia , Humanos , Masculino , Camundongos , Acidente Vascular Cerebral/complicações
4.
Handb Clin Neurol ; 176: 49-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33272410

RESUMO

The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.


Assuntos
Malformações Vasculares do Sistema Nervoso Central , Acidente Vascular Cerebral , Adulto , Biologia , Encéfalo , Humanos , Neovascularização Patológica
5.
CNS Neurosci Ther ; 25(10): 1085-1095, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359618

RESUMO

Patients with brain arteriovenous malformation (bAVM) are at risk of intracranial hemorrhage (ICH). Overall, bAVM accounts for 25% of hemorrhagic strokes in adults <50 years of age. The treatment of unruptured bAVMs has become controversial, because the natural history of these patients may be less morbid than invasive therapies. Available treatments include observation, surgical resection, endovascular embolization, stereotactic radiosurgery, or combination thereof. Knowing the risk factors for bAVM hemorrhage is crucial for selecting appropriate therapeutic strategies. In this review, we discussed several biological risk factors, which may contribute to bAVM hemorrhage.


Assuntos
Fístula Arteriovenosa/metabolismo , Barreira Hematoencefálica/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Hemorragias Intracranianas/metabolismo , Fístula Arteriovenosa/diagnóstico , Fístula Arteriovenosa/terapia , Barreira Hematoencefálica/patologia , Embolização Terapêutica/métodos , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico , Malformações Arteriovenosas Intracranianas/terapia , Hemorragias Intracranianas/diagnóstico , Hemorragias Intracranianas/terapia , Radiocirurgia/métodos , Fatores de Risco , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...