Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400788, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728155

RESUMO

Organic batteries are one of the possible routes for transitioning to sustainable energy storage solutions. However, the recycling of organic batteries, which is a key step toward circularity, is not easily achieved. This work shows the direct recycling of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl) (PTMA) and poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl acrylamide) (PTAm) based composite electrodes. After charge-discharge cycling, the electrodes are deconstructed using a solubilizing-solvent and then reconstructed using a casting-solvent. The electrochemical properties of the original and recycled electrodes are compared using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) cycling, from which it is discovered using time-of-flight secondary ion mass spectrometry (ToF-SIMS) that recycling can be challenged by the formation of a cathode electrolyte interphase (CEI). In turn, an additive is proposed to modify the CEI layer and improve the properties after recycling. Last, an anionic rocking chair battery consisting of PTAm electrodes as both positive and negative electrodes is demonstrated, in which the electrodes are recycled to form a new battery. This work demonstrates the recycling of composite electrodes for organic batteries and provides insights into the challenges and possible solutions for recycling the next-generation electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...