Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38393052

RESUMO

Three different populations of sulfated polysaccharides can be found in the cell wall of the red alga Botryocladia occidentalis. In a previous work, the structures of the two more sulfated polysaccharides were revised. In this work, NMR-based structural analysis was performed on the least sulfated polysaccharide and its chemically modified derivatives. Results have revealed the presence of both 4-linked α- and 3-linked ß-galactose units having the following chemical features: more than half of the total galactose units are not sulfated, the α-units occur primarily as 3,6-anhydrogalactose units either 2-O-methylated or 2-O-sulfated, and the ß-galactose units can be 4-O-sulfated or 2,4-O-disulfated. SPR-based results indicated weaker binding of the least sulfated galactan to thrombin, factor Xa, and antithrombin, but stronger binding to heparin cofactor II than unfractionated heparin. This report together with our previous publication completes the structural characterization of the three polysaccharides found in the cell wall of the red alga B. occidentalis and correlates the impact of their composing chemical groups with the levels of interaction with the blood co-factors.


Assuntos
Galactanos , Rodófitas , Galactanos/química , Heparina , Sulfatos/química , Galactose , Anticoagulantes/química , Rodófitas/química , Polissacarídeos/química , Parede Celular
2.
J Am Soc Mass Spectrom ; 34(12): 2864-2867, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37971787

RESUMO

Hydroxyl radical protein footprinting (HRPF) is a mass-spectrometry-based method for studying protein structures, interactions, conformations, and folding. This method is based on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. While catalase is commonly used as a quencher after the labeling of a protein by the hydroxyl radicals to efficiently remove the remaining hydrogen peroxide, it has some disadvantages. Catalase quenching adds a relatively high amount of protein to the sample, limiting the sensitivity of the method due to dynamic range issues and causing significant issues when dealing with more complex samples. We evaluated dimethylthiourea (DMTU) as a replacement for catalase in the quenching HRPF reactions. We observed that DMTU is highly effective at quenching HRPF oxidation. DMTU does not cause the background protein issues that catalase does, resulting in an increased number of protein identifications from complex mixtures. We recommend the replacement of catalase quenching with DMTU for all HRPF experiments.


Assuntos
Radical Hidroxila , Pegadas de Proteínas , Radical Hidroxila/química , Catalase , Pegadas de Proteínas/métodos , Proteínas/química , Oxirredução
3.
J Nat Prod ; 86(6): 1463-1475, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306476

RESUMO

In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-ß-N-acetylgalactosamine-(1→4)-ß-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.


Assuntos
COVID-19 , Pepinos-do-Mar , Animais , Anticoagulantes/farmacologia , Pepinos-do-Mar/química , Sulfatos/química , Heparina , SARS-CoV-2 , Polissacarídeos/química
4.
Int J Biol Macromol ; 238: 124168, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36963552

RESUMO

The structure of the sulfated galactan from the red alga Botryocladia occidentalis (BoSG) was originally proposed as a simple repeating disaccharide of alternating 4-linked α-galactopyranose (Galp) and 3-linked ß-Galp units with variable sulfation pattern. Abundance was estimated only for the α-Galp units: one-third of 2,3-disulfation and one-third of 2-monosulfation. Here, we isolated again the same BoSG fractions from the anion-exchange chromatography, obtaining the same NMR profile of the first report. More careful NMR analysis led us to revise the structure. A more complex sulfation pattern was noted along with the occurrence of 4-linked α-3,6-anhydro-Galp (AnGalp) units. Interestingly, the more sulfated BoSG fraction showed slightly reduced in vitro anti-SARS-CoV-2 activities against both wild-type and delta variants, and significantly reduced anticoagulant activity. The BoSG fractions showed no cytotoxic effects. The reduction in both bioactivities is attributed to the presence of the AnGalp unit. Docking scores from computational simulations using BoSG disaccharide constructs on wild-type and delta S-proteins, and binding analysis through competitive SPR assays using blood (co)-factors (antithrombin, heparin cofactor II and thrombin) and four S-proteins (wild-type, delta, gamma, and omicron) strongly support the conclusion about the deleterious impact of the AnGalp unit.


Assuntos
COVID-19 , Rodófitas , Humanos , Galactanos/farmacologia , Galactanos/química , Sulfatos/química , SARS-CoV-2 , Anticoagulantes/farmacologia , Anticoagulantes/química , Rodófitas/química , Dissacarídeos/farmacologia
5.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
6.
J Diet Suppl ; 19(4): 515-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33764265

RESUMO

The presence of bio-macromolecules as major ingredients is a primary factor in marketing many biologically derived macromolecular supplements. Workflows for analyzing these supplements for quality assurance, adulteration, and other supply-chain difficulties must include a qualitative assessment of small-molecule and macromolecular components; however, no such integrated protocol has been reported for these bio-macromolecular supplements. Twenty whey protein supplements were analyzed using an integrated workflow to identify protein content, protein adulteration, inorganic elemental content, and macromolecular and small-molecule profiles. Orthogonal analytical methods were employed, including NMR profiling, LC-DAD-QToF analysis of small-molecule components, ICP-MS analysis of inorganic elements, determination of total protein content by a Bradford assay, SDS-PAGE protein profiling, and bottom-up shotgun proteomic analysis using LC-MS-MS. All 20 supplements showed a reduced protein content compared to the claimed content but no evidence of adulteration with protein from an unclaimed source. Many supplements included unlabeled small-molecule additives (but nontoxic) and significant deviations in metal content, highlighting the importance of both macromolecular and small-molecule analysis in the comprehensive profiling of macromolecular supplements. An orthogonal, integrated workflow allowed the detection of crucial product characteristics that would have remained unidentified using traditional workflows involving either analysis of small-molecule nutritional supplements or protein analysis.


Assuntos
Suplementos Nutricionais , Proteômica , Suplementos Nutricionais/análise , Espectrometria de Massas/métodos , Proteínas do Soro do Leite/análise , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...