Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 27, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381255

RESUMO

The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes.

2.
Plants (Basel) ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299153

RESUMO

The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.

3.
Front Microbiol ; 13: 990169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187977

RESUMO

Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.

4.
Rev Diabet Stud ; 18(2): 135-139, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35831935

RESUMO

OBJECTIVE: Our objective was to assess the pattern of urine infections, the most common pathogen, and their susceptibility pattern to antibiotics among Saudi diabetic patients. METHODS: We performed a year-long cross-sectional study from January 2018 to January 2019 at KAAU Hospital in Riyadh, KSA. We cultured the urine specimens obtained from diabetic patients based on optimal aerobic and anaerobic microbiological methods. By adopting standard microbiological methods, we identified the bacterial isolates. We also followed the guidelines of the Clinical and Laboratory Standards Institute (CLSI) to do antibiotic susceptibility testing. RESULTS: A total of 100 isolates were evaluated, and a total of 22 organisms were isolated. The majority were multidrug-resistant organisms. Streptococcus haemolyticus was the most frequent organism and rated (15%). It was followed by Staphylococcus hominis (11%), Pseudomonas aeruginosa (9%), Enterococcus faecalis (9%), Enterococcus fiseum (7%), Escherichia coli (7%), Staphylococcus aureus (7%), Staphylococcus lantus (5%) and Klebsiella pneumoniae (5%). We also found multi-microbial infections. Most of the organisms were susceptible to tigecycline, gentamycin, and nitrofurantoin, rating (88%), (84%) and (78%), respectively. CONCLUSIONS: Our study revealed that a wide range of pathogens affects the diabetes patients. Staphylococcus haemolyticus is the most prevalent pathogen. We observed considerable antimicrobial resistance. Tigecycline had a wide sensitivity spectrum and was effective against most of the bacteria. Thus, it can be used as an empirical antibiotic.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/complicações , Infecções Bacterianas/tratamento farmacológico , Estudos Transversais , Enterococcus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Tigeciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...