Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2022: 2349849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432819

RESUMO

A bacterial or bone infection in the feet causes diabetic foot infection (DFI), which results in reddish skin in the wound and surrounding area. DFI is the most prevalent and dangerous type of diabetic mellitus. It will mainly occur in people with heart disease, renal illness, or eye disease. The clinical signs and symptoms of local inflammation are used to diagnose diabetic foot infection. In assessing diabetic foot ulcers, the infection has significant clinical implications in predicting the likelihood of amputation. In this work, a diabetic foot infection network (DFINET) is proposed to assess infection and no infection from diabetic foot ulcer images. A DFINET consists of 22 layers with a unique parallel convolution layer with ReLU, a normalization layer, and a fully connected layer with a dropout connection. Experiments have shown that the DFINET, when combined with this technique and improved image augmentation, should yield promising results in infection recognition, with an accuracy of 91.98%, and a Matthews correlation coefficient of 0.84 on binary classification. Such enhancements to existing methods shows that the suggested approach can assist medical experts in automated detection of DFI.


Assuntos
Diabetes Mellitus , Pé Diabético , Osteomielite , Amputação Cirúrgica , Pé Diabético/diagnóstico por imagem , , Humanos , Redes Neurais de Computação
2.
Mater Today Proc ; 51: 2512-2519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34926175

RESUMO

The Novel Corona Virus 2019 has drastically affected millions of people all around the world and was a huge threat to the human race since its evolution in 2019. Chest CT images are considered to be one of the indicative sources for diagnosis of COVID-19 by most of the researchers in the research community. Several researchers have proposed various models for the prediction of COVID-19 using CT images using Artificial Intelligence based algorithms (Alimadadi e al., 2020 [19], Srinivasa Rao and Vazquez, 2020 [20], Vaishya et al., 2020 [21]). EfficientNet is one of the powerful Convolutional Neural Network models proposed by Tan and Le (2019). The objective of this study is to explore the effect of image enhancement algorithms such as Laplace transform, Wavelet transforms, Adaptive gamma correction and Contrast limited adaptive histogram equalization (CLAHE) on Chest CT images for the classification of Covid-19 using the EfficientNet algorithm. SARS- COV-2 (Soares et al., 2020) dataset is used in this study. The images were preprocessed and brightness augmented. The EfficientNet algorithm is implemented and the performance is evaluated by adding the four image enhancement algorithms. The CLAHE based EfficientNet model yielded an accuracy of 94.56%, precision of 95%, recall of 91%, and F1 of 93%. This study shows that adding a CLAHE image enhancement to the EfficientNet model improves the performance of the powerful Convolutional Neural Network model in classifying the CT images for Covid-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...