Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 908680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845706

RESUMO

Western hemlock (Tsuga heterophylla) is highly susceptible to Annosus root and butt rot disease, caused by Heterobasidion occidentale across its native range in western North America. Understanding molecular mechanisms of tree defense and dissecting genetic components underlying disease resistance will facilitate forest breeding and disease control management. The aim of this study was to profile host transcriptome reprogramming in response to pathogen infection using RNA-seq analysis. Inoculated seedlings were clearly grouped into three types: quantitative resistant (QR), susceptible (Sus), and un-infected (Uif), based on profiles of H. occidentale genes expressed in host tissues. Following de novo assembly of a western hemlock reference transcriptome with more than 33,000 expressed genes, the defensive transcriptome reprogramming was characterized and a set of differentially expressed genes (DEGs) were identified with gene ontology (GO) annotation. The QR seedlings showed controlled and coordinated molecular defenses against biotic stressors with enhanced biosynthesis of terpenoids, cinnamic acids, and other secondary metabolites. The Sus seedlings showed defense responses to abiotic stimuli with a few biological processes enhanced (such as DNA replication and cell wall organization), while others were suppressed (such as killing of cells of other organism). Furthermore, non-synonymous single nucleotide polymorphisms (ns-SNPs) of the defense- and resistance-related genes were characterized with high genetic variability. Both phylogenetic analysis and principal coordinate analysis (PCoA) revealed distinct evolutionary distances among the samples. The QR and Sus seedlings were well separated and grouped into different phylogenetic clades. This study provides initial insight into molecular defense and genetic components of western hemlock resistance against the Annosus root and butt rot disease. Identification of a large number of genes and their DNA variations with annotated functions in plant resistance and defense promotes the development of genomics-based breeding strategies for improved western hemlock resistance to H. occidentale.

2.
Phytopathology ; 99(7): 792-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19522576

RESUMO

Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based on a consensus established by the P. ramorum research community. Clonal lineages are named with a two letter identifier for the continent on which they were first found (e.g., NA = North America; EU = Europe) followed by a number indicating order of appearance. Clonal lineages known to date are designated NA1 (mating type: A2; distribution: North America; environment: forest and nurseries), NA2 (A2; North America; nurseries), and EU1 (predominantly A1, rarely A2; Europe and North America; nurseries and gardens). It is expected that novel lineages or new variants within the existing three clonal lineages could in time emerge.


Assuntos
Filogenia , Phytophthora/classificação , Phytophthora/citologia , Doenças das Plantas/microbiologia , Quercus/microbiologia , Terminologia como Assunto , Células Clonais , Genótipo , Geografia , Phytophthora/genética , Phytophthora/isolamento & purificação
3.
Mycol Res ; 110(Pt 11): 1340-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17070027

RESUMO

Valdensinia heterodoxa (Sclerotiniacae) is a potential fungal bioherbicide for control of salal (Gaultheria shallon). The effect of culture media, substrates and relative humidity (RH) on growth, sporulation and conidial discharge of V. heterodoxa was determined for two isolates PFC2761 and PFC3027 in vitro. Culture media significantly affected the growth, sporulation, and conidial discharge of V. heterodoxa. Of eight agar media used, colony radial growth was optimal on salal oatmeal agar and salal potato dextrose agar for isolates PFC2761 and PFC3027, respectively; whereas sporulation was at an optimum on salal oatmeal agar for both isolates. Of the eight liquid media tested, mycelial production was highest on wheat bran-salal-potato dextrose broth. Growth on solid substrates greatly stimulated sporulation and conidial discharge of V. heterodoxa. Of the 12 solid substrates used, the greatest numbers of discharged conidia were observed from wheat bran and wheat bran-salal within 14d of sporulation. Sporulation on solid substrates continued for 42d. RH significantly affected the sporulation and conidial discharge for both isolates across all solid substrates tested. No conidia were produced or discharged below 93 % RH on wheat bran-salal and millet. With an increase of the RH from 93 to 97 %, sporulation and the number of discharged conidia increased significantly for both isolates on wheat bran-salal, but not on millet.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Ágar/análise , Ágar/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Meios de Cultura/análise , Meios de Cultura/farmacologia , Fibras na Dieta/análise , Fibras na Dieta/microbiologia , Umidade , Micélio/citologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...