Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 428: 128205, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999562

RESUMO

Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing metal availability in a contaminated soil. The SBR removed up to 99% of Cu and 91% of Cd in water, and exhibited a significantly faster and higher sorption capacity (qmax (g kg-1) = 1111.1 for Cu and 33.3 for Cd) than BFR (qmax (g kg-1) = 33.3 for Cu and 10.0 for Cd), even at acidic pH. Soil metal availability was significantly reduced by SBR (up to 57% for Cu and 86% for Cd) and BFR (up to 36% for Cu and 68% for Cd) compared to the unamended soil. The higher removal efficacy of SBR over BFR could be attributed to its higher alkalinity (pH = 12.5), carbonate content (82%), and specific surface area, as well as the activity of hydroxyl -OH and Si-O groups. The nano-scale SBR and BFR, the former particularly, are novel, of low cost, and environmental friendly amendments that can be used for the remediation of metal-contaminated water and soil.


Assuntos
Beta vulgaris , Metais Pesados , Nanoestruturas , Poluentes do Solo , Cádmio/análise , Argila , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Resíduos Sólidos , Açúcares , Água
2.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832170

RESUMO

Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)-(16 - x)CdO-(14ZnO)-(xEr2O3), (x = 1-6 mol%). These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses' density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC (ΣR) values of the glasses obtained via calculation varied from 0.1045-0.1039 cm-1 for Er1-Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media.

3.
Ecotoxicol Environ Saf ; 142: 375-387, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28441624

RESUMO

Contamination of long-term sewage effluent irrigated soils by potentially toxic elements (PTEs) is a serious concern due to its high environmental and health risk. Our scientific hypothesis is that soil amendments can cause contradictory effects on the element mobilization and phytoavailability depending on the type of element and amendment. Therefore, we aimed to assess the impact of the application (1%) of several low cost amendments and environmental wastes on the (im)mobilization, availability, and uptake of Al, Cd, Cr, Cu, Fe, Mn, Ni, and Zn by sorghum (Sorghum bicolor) in a long term sewage effluent irrigated sandy soils collected from Egypt. The used materials include activated charcoal (AC), potassium humate (KH), phosphate rock (PR), phosphogypsum (PG), triple superphosphate (TSP), phosphoric acid (PA), sulfur (S), sugar beet factory lime (SBFL), cement bypass kiln dust (CBD), egg shell (ES), bone mill (BM), brick factory residual (BFR), ceramic powder (CP), and drinking water treatment residual (WTR). The mobilization and availability of the elements in the soil were extracted using NH4NO3 and ammonium bicarbonate- diethylene triamine penta acetic acid (AB-DTPA), respectively. The above-ground biomass samples were analyzed for the elements studied. The results confirmed our hypothesis and concluded that although some amendments like S, PA, and TSP can be used for reducing the plant uptake of Al, Cr, and Fe, they might be used with KH for enhancing the phytoextraction of Cd, Cu, Mn, and Ni. Moreover, several wastes such as BFR and WTR might be used for enhancing the phytoextraction of Al, Cd, Cr, Cu, Fe, and Ni and reducing the uptake of Mn from the studied soil. Although SBFL decreased the plant uptake of Al, Fe, Mn, and Zn, it's increased the plant uptake of Cd, Cu, and Ni. Therefore, the amendments which reduce the plant uptake of an element might be suitable candidates for its immobilization, while the amendments which increase the plant uptake of an element might be used for enhancing its phytoextraction when using bioenergy crops like sorghum in similar contaminated sandy soils. The studied materials offered the potential for effective and low cost media for the treatment of PTEs contaminated sewage effluent irrigated sandy soils. These results should be verified in a field study.


Assuntos
Irrigação Agrícola/métodos , Fertilizantes , Metais Pesados/análise , Esgotos/química , Poluentes do Solo/análise , Solo/química , Compostos de Cálcio/química , Sulfato de Cálcio/química , Carvão Vegetal/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Egito , Metais Pesados/metabolismo , Óxidos/química , Fosfatos/química , Fósforo/química , Poluentes do Solo/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...