Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446463

RESUMO

This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.

2.
Bioresour Technol ; 378: 128985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001698

RESUMO

This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 ± 20.6 mM and 234.4 ± 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 ± 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures.


Assuntos
Microbiota , Eliminação de Resíduos , Fermentação , Ácido Láctico/metabolismo , Alimentos , Temperatura , Hidrogênio/metabolismo
3.
Chemosphere ; 287(Pt 1): 131944, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34438210

RESUMO

Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Humanos , Fósforo , Águas Residuárias
4.
Indian J Microbiol ; 61(3): 279-282, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294993

RESUMO

In our modern world, biotechnology products play important roles not only in our health and culture, but also various industries such as food, agriculture, sewage treatment, biofuels, nutraceuticals, and pharmaceuticals. Rapid technological advances in biotechnology over the last few decades have allowed industrial integration of mammalian cells (like the Chinese hamster ovary cells) and algae cells in pharmaceutical and biofuel industries to produce commercial products and valuable biomolecules. However, the cost of cell harvest and recovery can become expensive depending on the harvesting technique, degree of purification, and intended use of the end-products. This has led to numerous research in exploring and developing efficient harvesting techniques. Therefore, in this review, the popular harvesting techniques and their recent applications will be discussed.

5.
Environ Sci Pollut Res Int ; 27(21): 25956-25969, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378100

RESUMO

With the ever-increasing energy demands, fossil fuels are gradually depleting and eventually, these nonrenewable sources of energy will be exhausted. Hence, there is an urgent need to formulate alternative fuels that are both renewable and sustainable. Biomass is one of the reliable sources of energy because it is replenishable. Rice is the staple food in many countries, particularly in Asia. The number of paddy fields has increased tremendously over the years and is expected to increase in the future in response to the growing world population. This will lead to significant amounts of agricultural wastes annually, particularly rice straw. In some countries, open burning and soil incorporation are used to manage agricultural wastes. Open burning is the preferred method because it is inexpensive. However, this method is highly undesirable because of its detrimental impact on the environment resulting from the release of carbon dioxide and methane gas. Hence, it is important to develop an energy-harvesting method from rice straw for power generation. More studies need to be carried out on the availability and characteristics of rice straw as well as logistic analysis to assess the potential of rice straw for power generation. This paper is focused on reviewing studies pertaining to the characteristics and potential of rice straw for power generation, current rice straw management practices, and logistic analysis in order to develop a suitable energy-harvesting method from rice straw in Malaysia.


Assuntos
Fontes de Energia Bioelétrica , Oryza , Agricultura , Ásia , Malásia , Solo
6.
Environ Sci Pollut Res Int ; 26(15): 14849-14866, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937750

RESUMO

Due to global warming and increasing price of fossil fuel, scientists all over the world have been trying to find reliable alternative fuels. One of the most potential candidates is renewable energy from biomass. The race for renewable energy from biomass has long begun and focused on to combat the deteriorating condition of the environment. Palm oil has been in the spotlight as an alternative of bioenergy sources to resolve fossil fuel problem due to its environment-friendly nature. This review will look deep into the origins of palm oil and how it is processed, bioproducts from this biomass, and oil palm biomass-based power plant in Malaysia. Palm oil is usually processed from oil palm fruits and other parts of the oil palm plant are candidates for raw material of bioproduct generation. Oil palm biomass can be turned into three subcategories: bioproduct, biofuels, and biopower. Focusing on biofuel, the biodiesel from palm oil will be explored in detail and its implication in Malaysia as one of the biggest producers of oil palm in the world will also be emphasized comprehensively. The paper presents the detail of a schematic flow diagram of a palm oil mill process of transforming oil palm into crude palm oil and it wastes. This paper will also discuss the current oil palm biomass power plants in Malaysia. Palm oil has been proven itself as a potential alternative to reduce negative environmental impact of global warming.


Assuntos
Biocombustíveis , Óleo de Palmeira , Centrais Elétricas , Biomassa , Malásia , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA