Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2228, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472188

RESUMO

Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts.

2.
Cryst Growth Des ; 24(6): 2406-2414, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525100

RESUMO

The morphology of zeolite crystals strongly affects their textural, catalytic, and mechanical attributes. However, controlling zeolite crystal morphology without using modifiers or structure-directing agents remains a challenging task because of our limited understanding of the relationships between zeolite crystal shape, crystallization mechanism, and composition of the starting synthesis mixture. In this study, we aimed at developing a general method for controlling the morphology of zeolites by assessing the impact of the Si/T molar ratio of the synthesis gel on the growth rate of zeolite crystals in various crystallographic directions and on the final crystal morphology of the UTL germanosilicate with a 2D system of intersecting 14- and 12-ring pores. Our results showed that flat UTL crystals progressively thicken with the Si/Ge molar ratio, demonstrating that Ge concentration controls the relative rate of crystal growth in the perpendicular direction to the pore system. The morphology of other zeolites and zeotypes with an anisotropic structure, including AFI (12R), IFR (12R), MWW (10-10R), and IWW (12-10-8R), can also be predicted based on their Si/T ratio, suggesting a systematic pattern across zeolite structures and in a wide range of zeolite framework elements. Combined, these findings introduce a facile and cost-efficient method for directly controlling crystal morphology of zeolites with anisotropic structures with a high potential for scale-up while providing further insights into the role of elemental composition in zeolite crystal growth.

3.
J Mater Chem A Mater ; 12(2): 802-812, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38178865

RESUMO

Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures. To date, the family tree of ADOR materials has included the topological branches of UTL, UOV, IWW, *CTH, and IWV zeolites. Herein, we report on the expansion of ADOR zeolites with a new branch related to the IWR topology, which is yet unattainable experimentally but theoretically predicted as highly promising adsorbents for CO2 separation applications. The optimization of not only the chemical composition but also the dimensions of the crystalline domain in the parent IWR zeolite in the Assembly step was found to be the key to the success of its ADOR transformation into previously unknown IPC-17 zeolite with an intersecting 12 × 8 × 8-ring pore system. The structure of the as-prepared IPC-17 zeolite was verified by a combination of microscopic and diffraction techniques, while the results on the epichlorohydrin ring-opening with alcohols of variable sizes proved the molecular sieving ability of IPC-17 with potential application in heterogeneous catalysis. The proposed synthesis strategy may facilitate the discovery of zeolite materials that are difficult or yet impossible to achieve using a traditional bottom-up synthesis approach.

4.
J Am Chem Soc ; 145(16): 9081-9091, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040083

RESUMO

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.

5.
ACS Appl Mater Interfaces ; 13(13): 15143-15158, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769026

RESUMO

A set of supported Co3O4 catalysts have been designed and prepared to study the effect of textural characteristics and Brønsted acid sites concentration of MWW zeolite support, as well as cobalt loading on catalyst activity. Detailed characterization of the catalysts with a thorough study on their performance in the total oxidation of toluene and propane revealed that MCM-22 is the optimal support and that increasing Si/Al and decreasing external surface of MCM-22 positively affect the activity of supported Co3O4 catalysts, which is determined by their low-temperature reducibility. The activity of the Co/MCM-22 catalysts increased with cobalt content (5-20 wt %), consistent with enhancing the amount of low-temperature reducible Co3O4. The optimized catalyst containing 20% Co supported on dealuminated MCM-22 presented high turnover frequency (TOF) values in both toluene (2.6 × 10-5 s-1 at 270 °C) and propane (3.9 × 10-5 s-1 at 215 °C) oxidation and was characterized by outstanding cycling stability, long-term durability, water tolerance, and sintering resistance.

6.
Adv Mater ; 32(44): e2003264, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32780912

RESUMO

Zeolites are among the most environmentally friendly materials produced industrially at the Megaton scale. They find numerous commercial applications, particularly in catalysis, adsorption, and separation. Under ambient conditions aluminosilicate zeolites are stable when exposed to water or water vapor. However, at extreme conditions as high temperature, high water vapor pressure or increased acidity/basicity, their crystalline framework can be destroyed. The stability of the zeolite framework under aqueous conditions also depends on the concentration and character of heteroatoms (other than Al) and the topology of the zeolite. The factors critical for zeolite (in)stability in the presence of water under various conditions are reviewed from the experimental as well as computational sides. Nonreactive and reactive interactions of water with zeolites are addressed. The goal of this review is to provide a comparative overview of all-silica zeolites, aluminosilicates and zeolites with other heteroatoms (Ti, Sn, and Ge) when contacted with water. Due attention is also devoted to the situation when partial zeolite hydrolysis is used beneficially, such as the formation of hierarchical zeolites, synthesis of new zeolites or fine-tuning catalytic or adsorption characteristics of zeolites.

7.
Angew Chem Int Ed Engl ; 59(44): 19380-19389, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32510709

RESUMO

Zeolites are one of the most important heterogeneous catalysts, with a high number of large-scale industrial applications. While the synthesis of new zeolites remain rather limited, introduction of germanium has substantially increased our ability to not only direct the synthesis of zeolites but also to convert them into new materials post-synthetically. The smaller Ge-O-Ge angles (vs. Si-O-Si) and lability of the Ge-O bonds in aqueous solutions account for this behaviour. This Minireview discusses critical aspects of germanosilicate synthesis and their post-synthesis transformations to porous materials.

8.
Nat Commun ; 10(1): 5129, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719520

RESUMO

Owing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH). Here, we report a straightforward, vapour-phase-transport strategy for the transformation of IWW zeolite with low-density silica layers connected by labile Ge-rich units into material with new topology. In situ XRD and XANES studies on the mechanism of IWW rearrangement reveal an unusual structural distortion-reconstruction of the framework throughout the process. Therefore, our findings provide a step forward towards engineering nanoporous materials and increasing the number of zeolites available for future applications.

9.
Chem Soc Rev ; 48(4): 1095-1149, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30624450

RESUMO

This review addresses the recent developments and trends in tailoring the nature and local properties of active sites in zeolite-based catalysts, with a special focus on novel extra-large pore, layered (2D), nanocrystalline, and hierarchical (mesoporous) zeolites with enhanced pore accessibility. In the first part of the review, we discuss the latest achievements in the bottom-up (direct synthesis) and top-down (post-synthesis) approaches for isomorphous substitution in zeolites enabling control over the type (Brønsted, Lewis, or both), amount, strength, and location of acid sites. The benefits in catalysis provided by such zeolites with tuned acidity and improved accessibility are shown for different acid-catalyzed reactions involving bulky molecules, as in the synthesis of fine chemicals and biomass transformations. The incorporation of metal species of different sizes (increasing from single atoms to clusters and to nanoparticles) in zeolites allows expanding the set of reactions catalyzed by these materials. The main preparation strategies for designing metal-zeolite catalysts, especially those offering control over the size of the metal species, and their catalytic behaviour in industrially relevant and emerging sustainable catalytic processes are dealt with in the second part of the review. Particular attention is paid to the stabilization of size-controlled small metal clusters and nanoparticles through their encapsulation in the voids of zeolite frameworks as well as to the dynamic behaviour of the metal species under reactive environments with important implications in catalysis. The need for using advanced operando spectroscopic and imaging tools to unveil the precise nature and functioning of the active sites in working zeolites is emphasized. The information gathered in this review is expected to provide guidance for developing more efficient zeolite-based catalysts for existing and new applications.

10.
Beilstein J Org Chem ; 14: 2931-2939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546477

RESUMO

Highly active olefin metathesis catalysts were prepared by thermal spreading MoO3 and/or MoO2(acac)2 on MWW zeolites (MCM-22, delaminated MCM-56) and on two-dimensional MFI (all in NH4 + form). The catalysts' activities were tested in the metathesis of neat 1-octene (as an example of a longer chain olefin) at 40 °C. Catalysts with 6 wt % or 5 wt % of Mo were used. The acidic character of the supports had an important effect on both the catalyst activity and selectivity. The catalyst activity increases in the order 6MoO3/HZSM-5(25) (Si/Al = 25) << 6MoO2(acac)2/MCM-22(70) < 6MoO3/2D-MFI(26) < 6MoO3/MCM-56(13) < 6MoO3/MCM-22(28) reflecting both the enhancing effect of the supports' acidity and accessibility of the catalytic species on the surface. On the other hand the supports' acidity decreases the selectivity to the main metathesis product C14 due to an acid-catalyzed double bond isomerization (followed by cross metathesis) and oligomerization. 6MoO3/2D-MFI(26) with a lower concentration of the acidic centres resulting in catalysts of moderate activity but with the highest selectivity.

11.
Dalton Trans ; 47(9): 3084-3092, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29255818

RESUMO

IPC-12 zeolite is the first member of the ADOR family produced by the structural transformation of UOV. The details of the UOV rearrangement were studied to determine the influence of the properties of the parent zeolite and treatment conditions on the outcome of IPC-12 formation. It was established that incomplete disassembly of UOV can be caused by insufficient lability of interlayer connectivity in the parent material possessing Si-enriched D4Rs or by inhibition of hydrolysis by diluted acid at high temperature. The impacts of specific interactions of the framework with anions on controllable breaking of interlayer connectivity and the conditions of the treatment at low pH (<-1) on the characteristics of the produced IPC-12 were found to be negligible. The concentration of the acid significantly influences the extent and even the direction of UOV transformation. Layer disassembly is inhibited in 1-4 M acid solutions, and complete hydrolysis to a layered precursor can be achieved in 0.1 M solution, while application of 12 M solution led to direct formation of IPC-12. Layer reassembly followed using in situ XRD measurement with a synchrotron source was found to be a gradual process starting at 40 °C and completing at 200-220 °C.

12.
Angew Chem Int Ed Engl ; 56(15): 4324-4327, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28295998

RESUMO

The assembly-disassembly-organization-reassembly (ADOR) process has been used to disassemble a parent zeolite with the UOV structure type and then reassemble the resulting layers into a novel structure, IPC-12. The structure of the material has previously been predicted computationally and confirmed in our experiments using X-ray diffraction and atomic resolution STEM-HAADF electron microscopy. This is the first successful application of the ADOR process to a material with porous layers.

13.
Chemistry ; 22(48): 17377-17386, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27754569

RESUMO

Germanosilicate zeolites often suffer from low hydrothermal stability due to the high content of Ge. Herein, we investigated the post-synthesis introduction of Al accompanied by stabilization of selected germanosilicates by degermanation/alumination treatments. The influence of chemical composition and topology of parent germanosilicate zeolites (ITH, IWW, and UTL) on the post-synthesis incorporation of Al was studied. Alumination of ITH (Si/Ge=2-13) and IWW (Si/Ge=3-7) zeolites resulted in the partial substitution of Ge for Al (up to 80 %), which was enhanced with a decrease of Ge content in the parent zeolite. In contrast, in extra-large pore zeolite UTL (Si/Ge=4-6) the hydrolysis of the interlayer Ge-O bonds dominated over substitution. The stabilization of zeolite UTL was achieved using a novel two-step degermanation/alumination procedure by the partial post-synthesis substitution of Ge for Si followed by alumination. This new method of stabilization and incorporation of strong acid sites may extend the utilization of germanosilicate zeolites, which has been until now been limited.

14.
Phys Chem Chem Phys ; 18(27): 18063-73, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27326803

RESUMO

The catalytic activity and the adsorption properties of zeolites depend on their topology and composition. For a better understanding of the structure-activity relationship it is advantageous to focus just on one of these parameters. Zeolites synthesized recently by the ADOR protocol offer a new possibility to investigate the effect of the channel diameter on the adsorption and catalytic properties of zeolites: UTL, OKO, and PCR zeolites consist of the same dense 2D layers (IPC-1P) that are connected with different linkers (D4R, S4R, O-atom, respectively) resulting in the channel systems of different sizes (14R × 12R, 12R × 10R, 10R × 8R, respectively). Consequently, extra-framework cation sites compensating charge of framework Al located in these dense 2D layers (channel-wall sites) are the same in all three zeolites. Therefore, the effect of the zeolite channel size on the Lewis properties of the cationic sites can be investigated independent of other factors determining the quality of Lewis sites. UTL, OKO, and PCR and pillared 2D IPC-1PI materials were prepared in Li-form and their properties were studied by a combination of experimental and theoretical methods. Qualitatively different conclusions are drawn for Li(+) located at the channel-wall sites and at the intersection sites (Li(+) located at the intersection of two zeolite channels): the Lewis acid strength of Li(+) at intersection sites is larger than that at channel-wall sites. The Lewis acid strength of Li(+) at channel-wall sites increases with decreasing channel size. When intersecting channels are small (10R × 8R in PCR) the intersection Li(+) sites are no longer stable and Li(+) is preferentially located at the channel-wall sites. Last but not least, the increase in adsorption heats with the decreasing channel size (due to enlarged dispersion contribution) is clearly demonstrated.

15.
Chem Sci ; 7(6): 3589-3601, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997852

RESUMO

Porous organic-inorganic materials with tunable textural characteristics were synthesized using the top-down process by intercalating silsesquioxanes and polyhedral oligomeric siloxanes of different types between crystalline zeolite-derived layers. The influence of key parameters such as (i) linker nature (pure hydrocarbon, S-, N-containing); (ii) chain length in alkyl- and aryl bis(trialkoxysilyl) derivatives; (iii) denticity of the organic precursor molecules; (iv) nature and size of side chain in mono(trialkoxysilyl) substrates; (v) rigidity of the chain (saturated vs. unsaturated, aliphatic vs. aromatic); (vi) nature and size of leaving group on the structural and textural properties of formed hybrids was carefully addressed. It was established, that the optimal silsesquioxane appropriate for the formation of zeolite-derived hybrids with high textural characteristics should possess short alkyl or long aryl chains, relatively small leaving groups and denticity larger than 3. Addition of polydentate low-molecular binder improved the structural and textural characteristics of hybrids, especially when using bulky or hydrophilic linkers.

16.
Chem Soc Rev ; 44(20): 7177-206, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25946705

RESUMO

A novel methodology, called ADOR (assembly-disassembly-organisation-reassembly), for the synthesis of zeolites is reviewed here in detail. The ADOR mechanism stems from the fact that certain chemical weakness against a stimulus may be present in a zeolite framework, which can then be utilized for the preparation of new solids through successive manipulation of the material. In this review, we discuss the critical factors of germanosilicate zeolites required for application of the ADOR protocol and describe the mechanism of hydrolysis, organisation and condensation to form new zeolites starting from zeolite UTL. Last but not least, we discuss the potential of this methodology to form other zeolites and the prospects for future investigations.

17.
Chempluschem ; 80(3): 599-605, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31973419

RESUMO

Novel layered organic-inorganic materials functionalized with amino groups have been synthesized by using a two-dimensional zeolitic precursor, IPC-1P, prepared by a top-down approach from zeolite UTL. The formation of porous materials containing silsesquioxane linkers covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2  sorption, XRD, TEM). The textural properties and catalytic behavior of functionalized hybrid materials synthesized by direct pillaring of IPC-1P or by grafting of (3-aminopropyl)silyl groups to the IPC-1P precursor preliminarily pillared with tetraethoxysilane (TEOS) were compared. The use of a mixture of aminosilsesquioxanes and TEOS for pillaring of IPC-1P led to the formation of functionalized materials, which are characterized by excellent textural properties (SBET =154-435 m2 g-1 , Vtotal =0.336-0.630 cm3 g-1 ) and provide a 100 % yield of target benzylidenemalononitrile in the Knoevenagel condensation of benzaldehyde and malononitrile.

18.
Dalton Trans ; 43(27): 10548-57, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24710733

RESUMO

The influence of swelling (i.e. the size of tetraalkylammonium surfactant molecule, the presence of tetrapropylammonium hydroxide (TPAOH), pH) and pillaring (i.e. the ratio between the swollen precursor IPC-1P and tetraethyl orthosilicate) conditions on the structure and textural properties of the resulting materials was studied in detail for IPC-1P, which is the layered precursor of zeolite PCR. The swelling of IPC-1P proceeds efficiently under basic conditions both in mixed C(n)H(2n+1)N(CH3)3Cl/TPAOH systems and in C(n)H(2n+1)N(CH3)3OH (n = 8, 10, 12, 14, 16, 18) solutions at pH = 13-14. The intercalation of C(n)H(2n+1)N(+)(CH3)3 in IPC-1P resulted in the formation of expanded materials with interlayer distances growing with increasing length of the alkyl chain in C(n)H(2n+1)N(CH3)3(+): 1.59-1.86 (n = 8) < 1.89-2.11 (10) < 2.05-2.26 (12) = 2.08-2.26 (14) < 2.37-2.43 (16) < 2.57-2.71 (18) Å. IPC-2 zeolite was formed during calcination of IPC-1P samples swollen in C(n)H(2n+1)N(CH3)3OH solution, while PCR zeolite can be obtained by calcination of IPC-1P treated with either C(n)H(2n+1)N(CH3)3Cl/TPAOH or C(n)H(2n+1)N(CH3)3Cl. The pillaring of IPC-1P samples swollen with C(n)H(2n+1)N(CH3)3OH provided mesoporous materials with narrow pore size distribution in the range 2.5-3.5 nm. Pillared materials derived from the samples swollen in the presence of TPAOH were characterized by a broader pore size distribution. The optimal TEOS/IPC-1PSW ratio being sufficient for the formation of well-ordered pillared derivatives characterized by improved textural properties (S(BET) = 878 m(2) g(-1), V(total) = 0.599 cm(3) g(-1)) was found to be 1 : 1.5.

19.
J Am Chem Soc ; 136(6): 2511-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24451039

RESUMO

Novel layered zeolitic organic-inorganic materials have been synthesized using a two-dimensional zeolite precursor IPC-1P prepared by a top-down approach from zeolite UTL. The formation of porous materials containing organic linkers or polyhedral oligomeric siloxane covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2/Ar sorption analysis, XRD, (29)Si and (13)C NMR, TEM). The organic-inorganic porous hybrids obtained by intercalation with silsesquioxane posessed layered morphology and contained large crystalline domains. The hybrids exhibited mesoporous or hierarchical micro-/mesoporous systems, stable up to 350 °C. Textural properties of the formed zeolitic organic-inorganic materials can be controlled by varying the linker or synthetic conditions over a broad range. Surface areas and pore volumes of synthesized hybrids significantly exceed those for parent zeolite UTL and corresponding swollen material; the amount of micropores increased with increasing rigidity and size of the organic linker in the order biphenyl > phenylene > ethanediyl.

20.
Front Chem ; 1: 11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24790940

RESUMO

Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of ß-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of ß-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...