Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(6): 314, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545729

RESUMO

The gut mycobiome exhibits major influence on the gastrointestinal health and disease but received less attention due to low abundance. This study characterizes the fungal community and compares the microbial diversity between indoor and outdoor cats. Genomic DNA was extracted and sequenced by targeting the Internal Transcribed Spacer 1 (ITS1) region using Flongle flow cell on MinION™ sequencing platform. Results show the phylum Ascomycota and genus Peniophorella were numerous in indoor cats, whereas the Basidiomycota and Pichia were abundant in outdoor cats. Peniophorella formed the core mycobiome in both feline populations. Furthermore, alpha (p value = 0.0207) and beta diversities (p value = 0.009) results showed significant differences between the two groups. Overall, indoor cats have greater amounts of Peniophorella, whereas outdoor cats have higher Trichosporon and unclassified Sordariaceae. The study also suggests that keeping a cat indoors or left as a stray will affect their respective gut mycobiome.


Assuntos
Ascomicetos , Basidiomycota , Micobioma , Nanoporos , Animais , Ascomicetos/genética , Gatos , Fungos/genética
2.
Vet Med Sci ; 3(4): 252-262, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29152318

RESUMO

Obese dogs seem to have a different gut microbiome (GM) composition compared to lean dogs, and in humans, GM composition may negatively impact the ability to lose weight in some individuals. The purpose of this study was to investigate the interaction between exercise, weight-loss and the composition of GM in dogs. Eighteen obese pet dogs were recruited for a 12-week weight-loss intervention. All dogs were fed restrictively with a commercial high-protein/high-fibre dry diet, and eight of these dogs were enrolled in an exercise program in addition to the diet intervention. Faecal samples were collected and the dogs were weighed at week 0, week 6 and week 12. GM composition was determined using MiSeq-based tag-encoded 16S rRNA gene high-throughput amplicon sequencing, and concentrations of short chain fatty acids (SCFA) by gas-liquid chromatography. Total weight loss, food allowance and GM were not changed by exercise inclusion. However, Megamonas abundance negatively correlated with weight loss rate and Ruminococcaceae relative abundance was lower at 12 weeks in dogs with a faster weight loss rate (≥1% per week) compared with slower weight loss rate (<1% per week) independent of exercise. Acetic and propionic acid concentrations decreased in the dogs with a faster weight loss rate. Members of Megamonas and Ruminococcaceae produce acetic and propionic acids and we therefore interpret that having a GM that favour SCFA production may negatively affect weight loss rate in dogs. Weight loss rate in dogs may be related to the composition of the GM and its production of metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...