Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(23): 6865-6872, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774164

RESUMO

A metal-free oxidative dehydrogenation of N-heterocycles utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst is reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinoline, indole, isoquinoline, and quinoxaline 'on-water' under air atmosphere. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network.

2.
Nat Commun ; 13(1): 1848, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387970

RESUMO

Zeolitic imidazolate frameworks derived Fe1-N-C catalysts with isolated single iron atoms have been synthesized and applied for selective ammoxidation reactions. For the preparation of the different Fe-based materials, benzylamine as an additive proved to be essential to tune the morphology and size of ZIFs resulting in uniform and smaller particles, which allow stable atomically dispersed Fe-N4 active sites. The optimal catalyst Fe1-N-C achieves an efficient synthesis of various aryl, heterocyclic, allylic, and aliphatic nitriles from alcohols in water under very mild conditions. With its chemoselectivity, recyclability, high efficiency under mild conditions this new system complements the toolbox of catalysts for nitrile synthesis, which are important intermediates with many applications in life sciences and industry.

3.
Angew Chem Int Ed Engl ; 60(48): 25188-25202, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138507

RESUMO

N-Heterocycles, such as pyrroles, pyrimidines, quinazolines, and quinoxalines, are important building blocks for organic chemistry and the fine-chemical industry. For their synthesis, catalytic borrowing hydrogen and acceptorless dehydrogenative coupling reactions of alcohols as sustainable reagents have received significant attention in recent years. To overcome the problems of product separation and catalyst reusability, several metal-based heterogeneous catalysts have been reported to achieve these transformations with good yields and selectivity. In this Minireview, we summarize recent developments using both noble and non-noble metal-based heterogeneous catalysts to synthesize N-heterocycles from alcohols and N-nucleophiles via acceptorless dehydrogenation or borrowing hydrogen methodologies. Furthermore, this Minireview introduces strategies for the preparation and functionalization of the corresponding heterogeneous catalysts, discusses the reaction mechanisms and the roles of metal electronic states, and the influence of support Lewis acid-base properties on these reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...