Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(8): 3665-3674, 2020 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124340

RESUMO

Based on the principle of self-assembly, graphene oxide, chitosan, and FeCl3·6H2O were mixed to prepare graphene oxide-chitosan coated iron-composite particles (Fe@ GOCS). Batch static experiments were carried out to investigate the kinetic and thermodynamic characteristics of As(Ⅲ) adsorption, and to identify the adsorption mechanism. Results showed that the iron on the GOCS was mainly in the form of α-FeO(OH). The As(Ⅲ) adsorption capacity increased with decreasing pH, and the highest adsorption capacity occurred at pH 3. After approximately 45 h, As(Ⅲ) adsorption reached equilibrium under the conditions of pH 3 and a temperature of 298.15, 308.15, and 318.15 K. The maximum adsorption capacity was 289.4 mg·g-1 for an optimal dosage of adsorbents of 1.0 g·L-1. After five times of repeated adsorption-desorption, the adsorption capacity increased slightly. The thermodynamic parameters showed that ΔGθ<0, ΔSθ > 0, and ΔHθ>0, thus indicating that As(Ⅲ) adsorption on Fe@GOCS was a spontaneous, endothermic, and entropy-increasing reaction, and that a higher temperature was more favorable for As(Ⅲ) adsorption. The pseudo-second-order model provided a good fit of the As(Ⅲ) adsorption kinetics for Fe@GOCS. Compared to the Langmuir isotherm, As(Ⅲ) adsorption experimental data fitted better to the Freundlich and Sips models. In combination with the characterization results, it was found that ion exchange and surface complexation were the main mechanisms of As(Ⅲ) removal from aqueous solution using Fe@GOCS.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Grafite , Concentração de Íons de Hidrogênio , Ferro , Cinética , Temperatura , Termodinâmica , Água
2.
Huan Jing Ke Xue ; 41(7): 3337-3344, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608907

RESUMO

The adsorption kinetic of monothioarsenate (MTA) on goethite was characterized in this study, and batch experiments were then designed to further explore the effects of arsenate, arsenite, humic acid (HA), nitrate, and phosphate on the adsorption of MTA on goethite, and to identify the adsorption mechanism. The results showed that:① When a single arsenic species was present in a solution, the adsorption equilibrium times of MTA, arsenate, and arsenite on goethite were 8, 2, and 4 h, respectively. The adsorption experimental data of these three arsenic species were well fitted to a pseudo-second-order kinetic model. The equilibrium adsorption capacities (qe) of MTA, arsenate, and arsenite on goethite were 2129.851, 3291.838, and 1788.767 mg·kg-1, respectively. When MTA coexisted with arsenate or arsenite in a solution, MTA adsorption on goethite continued to be well fitted to a pseudo-second-order kinetic model. The value of qe for MTA was significantly reduced to 1236.941 mg·kg-1 when MTA coexisted with arsenate, and to 1532.287 mg·kg-1 when MTA coexisted with arsenite, due to the fact that arsenate and arsenite competed for adsorption sites with MTA. ② With an increase in HA concentration (10-50 mg·L-1), the qe of MTA decreased gradually, due to the fact that a large number of functional groups in HA preempted the surface adsorption sites of goethite with MTA. ③ When phosphate was added into the MTA solution, the qe values of MTA, arsenate, and arsenite on goethite were reduced greatly, to 492.802, 815.782, and 303.714 mg·kg-1, respectively, which was caused by the competitive adsorption of P and As. When nitrate was added into the MTA solution, the number of electron receptors and Eh of the solution increased, leading to the qe values of MTA, arsenate, and arsenite on goethite increasing to 2211.030, 3444.023, and 1835.537 mg·kg-1, respectively.

3.
Huan Jing Ke Xue ; 41(1): 284-292, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854929

RESUMO

Batch experiments were conducted to investigate the adsorption characteristics and mechanism of monothioarsenate (MTA) (>99%) on sand, soil sediment, and goethite under different pH and solid-liquid ratio conditions. Results showed the following. ① When MTA ranged from 0.14 to 23.59, 0.19 to 41.27, and 0.27 to 32.02 mg·L-1 in solutions, its maximum equilibrium adsorption capacity (Qm) in sand, soil sediment, and goethite was 21.54, 277.98, and 2607.42 mg·kg-1, respectively. After its adsorption reached equilibrium, a small amount of the MTA in the solutions transformed into arsenite and arsenate. ② As pH increased from 4 to 10, the equilibrium adsorption capacity (Qe) of MTA on sand decreased gradually, whereas Qe first decreased and then increased for soil sediment and goethite. As the solid-liquid ratio increased, the Qe of MTA in the three media gradually decreased. ③ X-ray powder diffraction (XRD), scanning electron microscope (SEM), and BET results further showed that the major factors controlling MTA adsorption on the three media included the low pore volume of sand, the high degree of crystallization of the soil sediment, and the large number of hydroxyl functional groups (-OH) on goethite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...