Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(7): 3491-3499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33837648

RESUMO

BACKGROUND: Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS: A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION: Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , ortoaminobenzoatos/farmacologia
2.
Pest Manag Sci ; 77(4): 2097-2105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33342080

RESUMO

BACKGROUND: Carboxylesterases (CarEs) are associated with detoxification of xenobiotics, including insecticides, in organism bodies. Overexpression of CarE genes is considered to have an important role in insecticide resistance in insects, however its involvement in multi-insecticide resistance has rarely been reported. This study aimed to assess the function of a CarE gene (PxαE8) in resistance to five insecticides in Plutella xylostella. RESULTS: Relative expression of PxαE8 in three multi-insecticide-resistant Plutella xylostella populations, GD-2017, GD-2019 and HN, was14.8-, 19.5- and 28.0-fold higher than that in the susceptible population. Exposure to lethal concentrations associated with 25% mortality (LC25 ) of beta-cypermethrin, chlorantraniliprole, metaflumizone, phoxim and tebufenozide could induce the specific activity of CarEs and increase the relative expression of PxαE8. By contrast, knockdown of PxαE8 expression dramatically reduced the activity of CarEs and increased the resistance of P. xylostella (GD-2019) larvae to beta-cypermethrin and phoxim by 47.4% and 45.5%, respectively. Further, a transgenic line of Drosophila melanogaster overexpressing PxαE8 was constructed and the bioassay results showed that the tolerance of transgenic Drosophila to beta-cypermethrin and phoxim was 3.93- and 3.98-fold higher than that of the untransgenic line. CONCLUSION: These results provide evidence that overexpression of PxαE8 is involved in resistance, at least to beta-cypermethrin and phoxim, in multi-insecticide-resistant P. xylostella populations, which could help in further understanding the molecular mechanisms of multi-insecticide resistance in this pest. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Carboxilesterase , Hidrolases de Éster Carboxílico , Drosophila melanogaster , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , Compostos Organotiofosforados , Piretrinas
3.
Pest Manag Sci ; 75(7): 1951-1961, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30578597

RESUMO

BACKGROUND: Insect chitinases play a vital part in chitin degradation in exoskeletons and gut linings during the molting process, and therefore are considered potential targets for new insecticide designs or RNA interference (RNAi)-based pest management. Systematic functional analysis of chitinase genes has already been conducted in several insect pests, but not Plutella xylostella. RESULTS: In this study, 13 full-length chitinase transcripts were obtained in P. xylostella. Developmental and tissue-specific expression pattern analysis revealed that seven chitinase transcripts were periodically expressed during molting stage and mainly expressed in the integument or midgut, including PxCht3, PxCht5, PxCht6-2, PxCht7, PxCht8, PxCht10 and PxCht-h. RNAi-mediated knockdown of these specific expressed genes revealed that PxCht5 and PxCht10 were essential in larval molting, pupation and eclosion, and PxCht7 was indispensable only in eclosion. No significant effects were observed on insect survival or normal development when the rest chitinase transcripts were suppressed by RNAi. CONCLUSION: Our results indicated the function of P. xylostella chitinase family genes during the molting process, and may provide potential targets for RNAi-based management of P. xylostella. © 2018 Society of Chemical Industry.


Assuntos
Quitinases/genética , Mariposas/enzimologia , Mariposas/genética , Interferência de RNA , Animais , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tegumento Comum/crescimento & desenvolvimento , Muda/genética , Mariposas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...