Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 8: 691789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277718

RESUMO

Currently soft robots primarily rely on pneumatics and geometrical asymmetry to achieve locomotion, which limits their working range, versatility, and other untethered functionalities. In this paper, we introduce a novel approach to achieve locomotion for soft robots through dynamically tunable friction to address these challenges, which is achieved by subsurface stiffness modulation (SSM) of a stimuli-responsive component within composite structures. To demonstrate this, we design and fabricate an elastomeric pad made of polydimethylsiloxane (PDMS), which is embedded with a spiral channel filled with a low melting point alloy (LMPA). Once the LMPA strip is melted upon Joule heating, the compliance of the composite structure increases and the friction between the composite surface and the opposing surface increases. A series of experiments and finite element analysis (FEA) have been performed to characterize the frictional behavior of these composite pads and elucidate the underlying physics dominating the tunable friction. We also demonstrate that when these composite structures are properly integrated into soft crawling robots inspired by inchworms and earthworms, the differences in friction of the two ends of these robots through SSM can potentially be used to generate translational locomotion for untethered crawling robots.

2.
Soft Matter ; 16(41): 9534-9542, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32966531

RESUMO

Fibrillar adhesives composed of fibers with non-circular cross-sections and contacts, including squares and rectangles, offer advantages that include a larger real contact area when arranged in arrays and simplicity in fabrication. However, they typically have a lower adhesion strength compared to circular pillars due to a stress concentration at the corner of the non-circular contact. We investigate the adhesion of composite pillars with circular, square and rectangular cross-sections each consisting of a stiff pillar terminated by a thin compliant layer at the tip. Finite element mechanics modeling is used to assess differences in the stress distribution at the interface for the different geometries and the adhesion strength of different shape pillars is measured in experiments. The composite fibrillar structure results in a favorable stress distribution on the adhered interface that shifts the crack initiation site away from the edge for all of the cross-sectional contact shapes studied. The highest adhesion strength achieved among the square and rectangular composite pillars with various tip layer thicknesses is approximately 65 kPa. This is comparable to the highest strength measured for circular composite pillars and is about 6.5× higher than the adhesion strength of a homogenous square or rectangular pillar. The results suggest that a composite fibrillar adhesive structure with a local stress concentration at a corner can achieve comparable adhesion strength to a fibrillar structure without such local stress concentrations if the magnitude of the corner stress concentrations are sufficiently small such that failure does not initiate near the corners, and the magnitude of the peak interface stress away from the edge and the tip layer thickness are comparable.

3.
ACS Appl Mater Interfaces ; 12(24): 27717-27725, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32449361

RESUMO

Materials and devices with tunable dry adhesion have many applications, including transfer printing, climbing robots, and gripping in pick-and-place processes. In this paper, a novel soft device to achieve dynamically tunable dry adhesion via modulation of subsurface pneumatic pressure is introduced. Specifically, a cylindrical elastomer pillar with a mushroom-shaped cap and annular chamber that can be pressurized to tune the adhesion is investigated. Finite element-based mechanics models and experiments are used to design, understand, and demonstrate the adhesion of the device. Specifically, the device is designed using mechanics modeling such that the pressure applied inside the annular chamber significantly alters the stress distribution at the adhered interface and thus changes the effective adhesion strength. Devices made of polydimethylsiloxane (PDMS) with different elastic moduli were tested against glass, silicon, and aluminum substrates. Adhesion strengths (σ0) ranging from ∼37 kPa (between PDMS and glass) to ∼67 kPa (between PDMS and polished aluminum) are achieved for the nonpressurized state. For all cases, regardless of the material and roughness of the substrates, the adhesion strength dropped to 40% of the strength of the nonpressurized state (equivalent to a 2.5× adhesion switching ratio) by increasing the chamber pressure from 0.3σ0 to 0.6σ0. Furthermore, the strength drops to 20% of the unpressurized strength (equivalent to a 5× adhesion switching ratio) when the chamber pressure is increased to σ0.

4.
Sci Robot ; 3(25)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-33141693

RESUMO

By using compliant lightweight actuators with shape memory alloy, we created untethered soft robots that are capable of dynamic locomotion at biologically relevant speeds.

5.
Soft Robot ; 4(4): 411-420, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29251572

RESUMO

Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.


Assuntos
Elastômeros , Robótica , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...