Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 58(8): e4967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464983

RESUMO

This study employed a vacuum ultraviolet synchrotron radiation source and reflectron time-of-flight mass spectrometry (TOF-MS) to investigate the photoionization and dissociation of styrene. By analyzing the photoionization mass spectrum and efficiency curve alongside G3B3 theoretical calculations, we determined the ionization energy of the molecular ion, appearance energy of fragment ions, and relevant dissociation pathways. The major ion peaks observed in the photoionization mass spectra of styrene correspond to C8 H8 + , C8 H7 + and C6 H6 + . The ionization energy of styrene is measured as 8.46 ± 0.03 eV, whereas the appearance energies of C8 H7 + and C6 H6 + are found to be 12.42 ± 0.03 and 12.22 ± 0.03 eV, respectively, in agreement with theoretical values. The main channel for the photodissociation of styrene molecular ions is the formation of benzene ions, whereas the dissociation channel that loses hydrogen atoms is the secondary channel. Based on the experimental results and empirical formulas, the required dissociation energies (Ed ) of C8 H7 + , C8 H6 + and C6 H6 + are calculated to be (3.96 ± 0.06), (4.00 ± 0.06) and (3.76 ± 0.06) eV, respectively. Combined with related thermochemical parameters, the standard enthalpies of formations of C8 H8 + , C8 H7 + , C8 H6 + and C6 H6 + are determined to be 964.2, 1346.3, 1350.2 and 1327.0 kJ/mol, respectively. Based on the theoretical study, the kinetic factors controlling the styrene dissociation reaction process are determined by using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. This provides a reference for further research on the atmospheric photooxidation reaction mechanism of styrene in atmospheric and interstellar environments.

2.
Phys Chem Chem Phys ; 24(43): 26915-26925, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317708

RESUMO

Understanding the combustion chemistry of biofuel compounds is of great importance in the intelligent selection of next-generation alternative fuels. Ethylene glycol (C6H10O2) is a prototypical representative of potential biofuels. In this work, the thermal decompositions along with the dissociative ionization of ethylene glycol are studied by synchrotron VUV photoionization mass spectrometry. As a part of the dissociative ionization study, the appearance energies of seven fragments are measured. Using the theoretical calculation results, the possible formation channels of these fragments are proposed. In particular, the productions of CH3OH+ and CH3OH2+ are suggested to be from the isomerization/dissociation process, where double proton transfer processes are highlighted. Using a tunable VUV source, the high-temperature pyrolysis products of ethylene glycol are differentiated from the dissociative ionization products. Specifically, two isomeric products vinyl alcohol and acetaldehyde by H2O elimination are obtained. Formaldehyde and methanol from direct C-C bond cleavage are identified. The fragmentations of fragile radicals such as hydroxymethyl, methoxy and ethoxy are used to explain the missing products from the direct C-C and C-O bond dissociation reactions. There is no experimental evidence for the occurrence of the H and H2 elimination reactions which may have not been accessed under the present temperature conditions.


Assuntos
Etilenoglicol , Síncrotrons , Raios Ultravioleta , Espectrometria de Massas/métodos , Biocombustíveis
3.
J Phys Chem A ; 126(43): 8021-8027, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259764

RESUMO

Calculations and experiments were conducted on ozonolysis of ethyl vinyl ether (EVE) and butyl vinyl ether to identify an unconventional diradical intermediate generated from the O-O bond cleavage of primary ozonide. The diradical can undergo a H atom shifting process that yields keto-hydroperoxide (KHP), the characteristic product that identifies the existence of a diradical intermediate. RRKM-ME calculation, based on the PES at the CCSD(T)/VTZ//M06-2X/6-311++G(2df,2p) level, disclosed branching ratios of ∼0.65% for KHP formation. Using synchrotron-generated vacuum-ultraviolet photoionization mass spectrometry measurements, the formation of KHPs (C4H8O4) in ozonolysis of EVE was confirmed by ion signals of C4H8O4+ (ionization of KHP) and C4H7O2+ (ion fragment from the loss of HO2 from KHP) by comparing their photoionization efficiency spectra with the calculated adiabatic ionization energies and appearance energies.

4.
Phys Chem Chem Phys ; 23(17): 10456-10467, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890587

RESUMO

2-Methyl-3-buten-2-ol (MBO232) is a biogenic volatile organic compound (BVOC), and has a large percentage of emission into the atmosphere. The vacuum ultraviolet (VUV) photochemistry of BVOCs is of great importance for atmospheric chemistry. Studies have been carried out on several BVOCs but have not extended to MBO232. In the present report, the photoionization and dissociation processes of MBO232 in the energy range of 8.0-15.0 eV have been studied by tunable VUV synchrotron radiation coupled with a time-of-flight mass spectrometer. By measuring the photoionization spectra, the adiabatic ionization energy (AIE) of MBO232 and the appearance energies (AEs) of the eight identified fragment ions (i.e., C4H7O+, C3H7O+, C5H9+, C3H6O+, CH3CO+, CH3O+, C4H5+, and C3H5+) were determined. High-level quantum chemistry calculations suggest that there are 3 direct channels and 5 indirect channels via transition states and intermediates accountable for these fragments. Among the reaction channels, the direct elimination of CH3 is the most dominant channel and produces the resonance-stabilized radical cation. Most interestingly, our results show that the CH3 selectively migrates towards the cation, which leads to the different indirect channels. The CH3 migration is a rare process in the dissociative photoionization of metal-free organic molecules. We explain the process by molecular orbital calculations and electron localization function analysis and explore the non-conventional dissociation channels via the CH3 roaming mechanism. We further perform kinetics analysis using RRKM theory for the channels of interest. The activation barrier, and rate constants are analyzed for the branching fractions of the products. These results provide important implications for the VUV photochemistry of BVOCs in the atmosphere.

5.
J Phys Chem A ; 123(10): 1929-1936, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30811197

RESUMO

Criegee intermediates have raised much attention in atmospheric chemistry because of their significance in ozonolysis mechanism. The simplest Criegee intermediate, CH2OO, and its reactions with acrylic acid including cycloadditions and insertions as main entrance channels have been investigated at CCSD(T)/cc-pVTZ//M06-2X/6-31G(d,p) level. Temperature- and pressure-dependent kinetics were predicted by solving the time-dependent master equations based on Rice-Ramsperger-Kassel-Marcus theory using MESS program, with temperatures from 200 to 500 K and pressures from 0.001 to 1000 atm. Variational transition state theory (VTST) was used for barrierless pathways and conventional transition state theory (CTST) for pathways with distinct barriers. Results indicate that hydroperoxymethyl acrylate is the dominant product under atmospheric conditions. The combination of two reactants will reduce the volatility and makes a possible factor that induces formation of secondary organic aerosols, which suggests CH2OO's entangled role in ever-increasing air pollution.

6.
Chemosphere ; 221: 263-269, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30640009

RESUMO

Reactions between chlorine and unsaturated esters in gas phase are examined in a slow-flow reaction tube inside the laboratory-built photoionization mass spectrometer at the energy range of 8-11 eV. 248 nm laser radiation is used to initiate the reaction. Products are distinguished, C5H8O2Cl for addition, and C5H7O2, C5H7O2Cl and C5H9O2Cl for abstraction. The direct or indirect products are detected, indicating secondary reactions. And experimental ionization potentials are procured for direct adducts of methyl methacrylate to be 8.30 eV and for that of ethyl acrylate to be 9.95 eV which are well consistent with theoretical ionization potentials of likely isomers. Theoretical reaction channels are also accounted for, optimized under M06-2X/6-31 + G(d,p) level and ionization potentials of products are calculated under M06-2X/6-31 + G(d,p) level also. Differences between experimental and theoretical details are discussed.


Assuntos
Acrilatos/química , Cloro/química , Metilmetacrilato/química , Ésteres/química , Espectrometria de Massas , Síncrotrons
7.
J Biomol Struct Dyn ; 37(9): 2415-2429, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30052144

RESUMO

It's favorable to alter KRas mutation's location to endomembrane by interfering the binding of PDEδ (the prenyl-binding protein phosphodiesterase delta) to KRas. In the present work, the binding of four inhibitors (Deltarasin, allyl analogue, pyrazolopyridazinone derivative, and Deltazinone 1) to PDEδ is investigated with all-atom Molecular Dynamic (MD) simulations. The binding free energy calculation results reveal that van der Waals (VDW) energy provides the major force for affinity binding. Moreover, the binding energy decomposition indicates that residues R61 and I129 provide important contributions to binding energies in all systems. The conserved hydrogen bonds play crucial roles in anchoring the inhibitors to the exact site for binding. The results for conformational analysis of PDEδ/free and PDEδ/inhibitors systems show that the structures are more stable after the inhibitors' binding to the PDEδ. It is also found that the most unstable system among four complexes is PDEδ/pyrazolopyridazinone derivative system whose α3-helix formed by the residues P113-Q116 disappears. This study may provide valuable information for the design of high potency PDEδ inhibitors. Communicated by Ramaswamy H. Sarma.


Assuntos
Benzimidazóis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Pirazinas/química , Pirazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Ligação de Hidrogênio , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pirazinas/metabolismo , Pirazinas/farmacologia , Pirazóis/metabolismo , Pirazóis/farmacologia , Termodinâmica
8.
Phys Chem Chem Phys ; 18(19): 13554-63, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27141555

RESUMO

Photoionization and dissociation of the 1-propanol dimer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. Besides the protonated monomer cation (C3H7OH)·H(+) (m/z = 61) and Cα-Cß bond cleavage fragment CH2O·(C3H7OH)H(+) (m/z = 91), the measured mass spectrum at an incident photon energy of 13 eV suggests a new dissociation channel resulting in the formation of the (C3H7OH)·H(+)·(C2H5OH) (m/z = 107) fragment. The appearance energies of the fragments (C3H7OH)·H(+), CH2O·(C3H7OH)H(+) and (C3H7OH)·H(+)·(C2H5OH) are measured at 10.05 ± 0.05 eV, 9.48 ± 0.05 eV, and 12.8 ± 0.1 eV, respectively, by scanning photoionization efficiency (PIE) spectra. The 1-propanol ion fragments as a function of VUV photon energy were interpreted with the aid of theoretical calculations. In addition to O-H and Cα-Cß bond cleavage, a new dissociation channel related to Cß-Cγ bond cleavage opens. In this channel, molecular rearrangement (proton transfer and hydrogen transfer after surmounting an energy barrier) gives rise to the generated complex, which then dissociates to produce the mixed propanol/ethanol proton bound cation (C3H7OH)·H(+)·(C2H5OH). This new dissociation channel has not been reported in previous studies of ethanol and acetic acid dimers. The photoionization and dissociation processes of the 1-propanol dimer are described in the photon energy range of 9-15 eV.

9.
J Mass Spectrom ; 51(2): 169-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26889934

RESUMO

In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time-of-flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6 H9 (+) , C6 H7 (+) , C5 H7 (+) , C5 H5 (+) , C4 H6 (+) , C4 H5 (+) , C3 H5 (+) and C3 H3 (+) were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X-D/6-31+g(d,p) level. The coupled cluster method, CCSD(T)/cc-pVTZ, was employed to calculate the corresponding energies with the zero-point energy corrections by the ωB97X-D/6-31+g(d,p) approach. Combining experimental and theoretical results, possible formation pathways of the fragment ions were proposed and discussed in detail. The retro-Cope rearrangement was found to play a crucial role in the formation of C4 H6 (+) , C4 H5 (+) and C3 H5 (+) . Intramolecular hydrogen migrations were observed as dominant processes in most of the fragmentation pathways of cyclohexene. The present research provides a clear picture of the photoionization and dissociation processes of cyclohexene in the 8- to 15.5-eV photon energy region.


Assuntos
Cicloexenos/análise , Cicloexenos/química , Íons/análise , Íons/química , Espectrometria de Massas , Modelos Moleculares , Espectrofotometria Ultravioleta , Síncrotrons , Vácuo
10.
J Chem Phys ; 142(2): 024306, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591352

RESUMO

While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH)⋅H(+) (m/z = 47) and the ß-carbon-carbon bond cleavage fragment CH2O⋅(C2H5OH)H(+) (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH)⋅(CH3)(+) (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH)⋅H(+) and CH2O⋅(C2H5OH)H(+) have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.


Assuntos
Dimerização , Etanol/química , Processos Fotoquímicos , Síncrotrons , Raios Ultravioleta , Modelos Moleculares , Conformação Molecular
11.
J Phys Chem A ; 118(34): 7096-103, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25080068

RESUMO

In present report, we explored hyperconjugation effects on the site- and bond-selective dissociation processes of cationic ethanol conformers by the use of theoretical methods (including configuration optimizations, natural bond orbital (NBO) analysis, and density of states (DOS) calculations, etc.) and the tunable synchrotron vacuum ultraviolet (SVUV) photoionization mass spectrometry. The dissociative mechanism of ethanol cations, in which hyperconjugative interactions and charge-transfer processes were involved, was proposed. The results reveal Cα-H and C-C bonds are selectively weakened, which arise as a result of the hyperconjugative interactions σCα-H → p in the trans-conformer and σC-C → p in gauche-conformer after being ionized. As a result, the selective bond cleavages would occur and different fragments were observed.


Assuntos
Cátions/química , Etanol/química , Elétrons , Espectrometria de Massas , Modelos Químicos
12.
Eur J Mass Spectrom (Chichester) ; 20(6): 419-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25905866

RESUMO

We investigated the photoionization and dissociation photoionization of the ß-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV. The experimental ionization energy (IE) value is 8.60eV using electron impact as the ionization source which is not in good agreement with theoretical value (8.41 eV) with a G3MP2 method. We obtained the accurate IE of ß-pinene (8.45 ± 0.03eV) derived from the efficiency spectrum which is in good agreement with the theoretical value (8.38eV) of the CBS-QB3 method. We elucidated the dissociation pathways of primary fragment ions from the ß-pinene cation on the basis of experimental observations in combination with theoretical calculations. Most of the dissociation pathways occur via a rearrangement reaction prior to dissociation. We also determined the structures of the transition states and intermediates for those isomerization processes.

13.
J Chem Phys ; 139(2): 024307, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862943

RESUMO

Site-selective ionization of ethanol dimer and the subsequent fragmentation were studied by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. With photoionization efficiency spectra measurements and theoretical calculations, the detailed mechanisms of the ionization-dissociation processes of ethanol dimer under VUV irradiation were explored. In 9.49-10.89 eV photon energy range, it was found that the ejection of the highest occupied molecular orbital (HOMO) electron from hydrogen bond donor induces a rapid barrierless proton-transfer process followed by two competitive dissociation channels, generating (C2H5OH)[middle dot]H(+) and CH2O[middle dot](C2H5OH)H(+), respectively. The latter comes from a carbon-carbon bond cleavage in the donor. While the photon energy is 10.9-11.58 eV, the electron of HOMO-1 of the hydrogen bond acceptor, is removed. Besides the dissociation channel to produce C2H5OH and C2H5OH(+), a new channel to generate (C2H5OH)[middle dot]CH2OH(+) is opened, where the cleavage of the carbon-carbon bond occurs in the acceptor. When the photon energy increases to 11.58 eV, the electron from HOMO-2 is ejected.

14.
J Chem Phys ; 138(9): 094306, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23485293

RESUMO

Dissociation of internal energy selected CF4(+) ions in an excitation energy range of 15.40-19.60 eV has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. Only CF3(+) fragment ions are observed in coincident mass spectra, indicating all the X(2)T1, A(2)T2, and B(2)E ionic states of CF4(+) are fully dissociative. Both kinetic energy released distribution (KERD) and angular distribution in dissociation of CF4(+) ions have been derived from three-dimensional TPEPICO time-sliced images. A parallel distribution of CF3(+) fragments along the polarization vector of photon is observed for dissociation of CF4(+) ions in all the low-lying electronic states. With the aid of F-loss potential energy curves, dissociation mechanisms of CF4(+) ions in these electronic states have been proposed. CF4(+) ions in both X(2)T1 and A(2)T2 states directly dissociate to CF3(+) and F fragments along the repulsive C-F coordinate, while a two-step dissociation mechanism is suggested for B(2)E state: CF4(+)(B(2)E) ion first converts to the lower A(2)T2 state via internal conversion, then dissociates to CF3(+) and F fragments along the steep A(2)T2 potential energy surface. In addition, an adiabatic appearance potential of AP0(CF3(+)∕CF4) has also been established to be 14.71 ± 0.02 eV, which is very consistent with the recent calculated values.

15.
J Chem Phys ; 137(12): 124308, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23020332

RESUMO

In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via ß-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.


Assuntos
Ácido Acético/química , Teoria Quântica , Síncrotrons , Raios Ultravioleta , Dimerização , Elétrons , Cinética , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Termodinâmica
16.
J Chem Phys ; 136(3): 034304, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22280757

RESUMO

Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.


Assuntos
Cloreto de Metila/química , Cinética , Espectrometria de Massas , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Vibração
17.
J Environ Sci (China) ; 24(12): 2075-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23534203

RESUMO

The gas-phase organic compounds resulting from OH-initiated photooxidation of isoprene have been investigated on-line by VUV photoionization mass spectrometry based on synchrotron radiation for the first time. The photoionization efficiency curves of the corresponding gaseous products as well as the chosen standards have been deduced by gating the interested peaks in the photoionization mass spectra while scanning the photon energy simultaneously, which permits the identification of the pivotal gaseous products of the photooxidation of isoprene, such as formaldehyde (10.84 eV), formic acid (11.38 eV), acetone (9.68 eV), glyoxal (9.84 eV), acetic acid (10.75 eV), methacrolein (9.91 eV), and methyl vinyl ketone (9.66 eV). Proposed reaction mechanisms leading to the formation of these key products were discussed, which were completely consistent with the previous works of different groups. The capability of synchrotron radiation photoionization mass spectrometry to directly identify the chemical composition of the gaseous products in a simulation chamber has been demonstrated, and its potential application in related studies of atmospheric oxidation of ambient volatile organic compounds is anticipated.


Assuntos
Butadienos/química , Hemiterpenos/química , Pentanos/química , Butadienos/efeitos da radiação , Hemiterpenos/efeitos da radiação , Espectrometria de Massas , Oxirredução , Pentanos/efeitos da radiação , Síncrotrons
18.
Rapid Commun Mass Spectrom ; 26(2): 189-94, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22173807

RESUMO

We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase. This finding is reasonably consistent with results of studies conducted in other laboratories using different methods. The results indicate that synchrotron radiation photoionization mass spectrometry coupled with a smog chamber is a potentially powerful tool for the study of the mechanism of atmospheric oxidations and the formation of secondary organic aerosols.

19.
J Mass Spectrom ; 46(11): 1152-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22124987

RESUMO

The photoionization of the monoterpene limonene has been studied using tunable vacuum ultraviolet synchrotron radiation in the region from the threshold for ionization of the parent molecule up to 15.5 eV. The adiabatic ionization energy of limonene is derived from photoionization efficiency spectrum and found to be 8.27 eV, compared with the density functional theory calculations which yields a value of 8.08 eV (B3LYP/6-311++G). Primary dissociation pathways of the parent molecule ions are investigated by experimental observations and theoretical calculations. Most of the fragmentation channels occur via a rearrangement reaction prior to dissociation. Transition structures and intermediates for those isomerization processes are also determined.


Assuntos
Cicloexenos/química , Espectrometria de Massas/métodos , Terpenos/química , Cicloexenos/efeitos da radiação , Íons/química , Limoneno , Modelos Moleculares , Processos Fotoquímicos , Síncrotrons , Terpenos/efeitos da radiação , Raios Ultravioleta , Vácuo
20.
Anal Chem ; 83(23): 9024-32, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22011279

RESUMO

This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...