Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Surv Ophthalmol ; 69(6): 905-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39053594

RESUMO

Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²âº homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.


Assuntos
Autofagia , Luz , Humanos , Luz/efeitos adversos , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/efeitos da radiação , Animais , Retina/efeitos da radiação , Degeneração Retiniana/etiologia , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/metabolismo , Lesões por Radiação/prevenção & controle , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/prevenção & controle
2.
Respir Res ; 25(1): 288, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080603

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS: This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS: At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS: Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.


Assuntos
Angiotensina II , Hipertensão Pulmonar , Nefrectomia , Cloreto de Sódio na Dieta , Animais , Masculino , Ratos , Angiotensina II/sangue , Enzima de Conversão de Angiotensina 2/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Rim/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Sistema Renina-Angiotensina/fisiologia , Cloreto de Sódio na Dieta/efeitos adversos
3.
Exp Eye Res ; 242: 109889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593971

RESUMO

Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.


Assuntos
Autofagia , Estresse Oxidativo , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Inflamassomos/metabolismo , Lipofuscina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia
4.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553964

RESUMO

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Assuntos
Depressão , Óleos Voláteis , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
5.
Artigo em Inglês | MEDLINE | ID: mdl-38176531

RESUMO

Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1ß, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.


Assuntos
Citocinas , Transtornos Mentais , Humanos , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
6.
Brain Res ; 1822: 148603, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748570

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Medicina Tradicional Chinesa , Microglia/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia
7.
Am J Physiol Cell Physiol ; 325(4): C1058-C1072, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661916

RESUMO

Previous studies have reported the beneficial role of Aloperine (ALO), an active vasodilator purified from the seeds and leaves of the herbal plant Sophora alopecuroides L., on experimental pulmonary hypertension (PH); however, detailed mechanisms remain unclear. In this study, monocrotaline-induced PH (MCT-PH) rat model and primarily cultured rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to investigate the mechanisms of ALO on experimental PH, pulmonary vascular remodeling, and excessive proliferation of PASMCs. Results showed that first, ALO significantly prevented the disease development of MCT-PH by inhibiting right ventricular systolic pressure (RVSP) and right ventricular hypertrophy indexed by the Fulton Index, normalizing the pulmonary arterials (PAs) remodeling and improving the right ventricular function indexed by transthoracic echocardiography. ALO inhibited the excessive proliferation of both PAs and PASMCs. Then, isometric tension measurements showed vasodilation of ALO on precontracted PAs isolated from both control and MCT-PH rats via activating the KCNQ channel, which was blocked by specific KCNQ potassium channel inhibitor linopirdine. Moreover, by using immunofluorescence staining and nuclear/cytosol fractionation, we further observed that ALO significantly enhanced the PPARγ nuclear translocation and activation in PASMCs. Transcriptome analyses also revealed activated PPARγ signaling and suppressed calcium regulatory pathway in lungs from MCT-PH rats treated with ALO. In summary, ALO could attenuate MCT-PH through both transient vasodilation of PAs and chronic activation of PPARγ signaling pathway, which exerted antiproliferative roles on PASMCs and remodeled PAs.NEW & NOTEWORTHY Aloperine attenuates monocrotaline-induced pulmonary hypertension (MCT-PH) in rats by inhibiting the pulmonary vascular remodeling and proliferation of pulmonary arterial smooth muscle cells (PASMCs). In mechanism, Aloperine not only exerts a transient KCNQ-dependent vasodilation in precontracted pulmonary arteries (PAs) from both control and MCT-PH rats but also activates PPARγ nuclear translocation and signaling transduction in PASMCs, which chronically inhibits the calcium regulatory pathway and proliferation of PASMCs.

8.
Signal Transduct Target Ther ; 8(1): 276, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452066

RESUMO

Exposure to the spike protein or receptor-binding domain (S-RBD) of SARS-CoV-2 significantly influences endothelial cells and induces pulmonary vascular endotheliopathy. In this study, angiotensin-converting enzyme 2 humanized inbred (hACE2 Tg) mice and cultured pulmonary vascular endothelial cells were used to investigate how spike protein/S-RBD impacts pulmonary vascular endothelium. Results show that S-RBD leads to acute-to-prolonged induction of the intracellular free calcium concentration ([Ca2+]i) via acute activation of TRPV4, and prolonged upregulation of mechanosensitive channel Piezo1 and store-operated calcium channel (SOCC) key component Orai1 in cultured human pulmonary arterial endothelial cells (PAECs). In mechanism, S-RBD interacts with ACE2 to induce formation of clusters involving Orai1, Piezo1 and TRPC1, facilitate the channel activation of Piezo1 and SOCC, and lead to elevated apoptosis. These effects are blocked by Kobophenol A, which inhibits the binding between S-RBD and ACE2, or intracellular calcium chelator, BAPTA-AM. Blockade of Piezo1 and SOCC by GsMTx4 effectively protects the S-RBD-induced pulmonary microvascular endothelial damage in hACE2 Tg mice via normalizing the elevated [Ca2+]i. Comparing to prototypic strain, Omicron variants (BA.5.2 and XBB) of S-RBD induces significantly less severe cell apoptosis. Transcriptomic analysis indicates that prototypic S-RBD confers more severe acute impacts than Delta or Lambda S-RBD. In summary, this study provides compelling evidence that S-RBD could induce persistent pulmonary vascular endothelial damage by binding to ACE2 and triggering [Ca2+]i through upregulation of Piezo1 and Orai1. Targeted inhibition of ACE2-Piezo1/SOCC-[Ca2+]i axis proves a powerful strategy to treat S-RBD-induced pulmonary vascular diseases.


Assuntos
COVID-19 , Células Endoteliais , Animais , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Cálcio , COVID-19/genética , SARS-CoV-2 , Canais de Cálcio/genética , Homeostase/genética , Canais Iônicos
9.
World J Stem Cells ; 15(3): 52-70, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37007453

RESUMO

Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells (MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of studies suggest that the therapeutic effect after transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-Exos). And this cell-free mediated therapy appears to circumvent many risks and difficulties when compared to cell therapy, and it may be the most promising new strategy for treating stroke as stem cell replacement therapy. Studies suggest that suppressing inflammation via modulation of the immune response is an additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflammatory immune response following IS by modulating the central nervous system, the peripheral immune system, and immunomodulatory molecules, thereby promoting neurofunctional recovery after stroke. Thus, this paper reviews the role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS inflammation in order to identify new research targets.

10.
Biomacromolecules ; 24(3): 1345-1354, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857757

RESUMO

Chronic wounds are prone to produce excessive reactive oxygen species (ROS), which are the main reason for multiple bacterial infections and ulcers at the wound. Therefore, regulating ROS is the key in the process of wound healing. Herein, a new type of thermosensitive hydrogels is developed to improve the scavenging efficiency of ROS and accelerate wound repair. Nano-CeO2 was uniformly dispersed on the surface of mesoporous silica (MSN). The nanocomposite particles were physically crosslinked with poly(N-isopropylacrylamide) (PNIPAM) to form a MSN-CeO2@PNIPAM thermoresponsive hydrogel (PMCTH). The stability, temperature sensitivity, rheological properties, biocompatibility, and wound healing ability of the PMCTH were evaluated in detail. The results showed that the hydrogel could not only maintain the stability of the system for a long time with low biological toxicity but also have a phase transition temperature close to the human body temperature. In addition, the PMCTH was directly applied onto the skin surface. The MSN-CeO2 nanoparticles would be dispersed in the hydrogel to restrict ROS exacerbation effects and promoted the formation of blood vessels as well as surrounding tissues, accelerating the wound healing. More importantly, animal experiments showed that when the mass ratio of CeO2 to MSN was 40%, the wound healing rate reached up to 78% on the 10th day, which was far higher than that of other experimental groups. This study provides a new strategy and experimental basis for the applications of functional hydrogels in wound repair.


Assuntos
Hidrogéis , Nanopartículas , Animais , Humanos , Espécies Reativas de Oxigênio , Cicatrização , Bandagens
11.
Front Cell Neurosci ; 16: 889442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518646

RESUMO

Communication between microglia and other cells has recently been at the forefront of research in central nervous system (CNS) disease. In this review, we provide an overview of the neuroinflammation mediated by microglia, highlight recent studies of crosstalk between microglia and CNS resident and infiltrating cells in the context of ischemic stroke (IS), and discuss how these interactions affect the course of IS. The in-depth exploration of microglia-intercellular communication will be beneficial for therapeutic tools development and clinical translation for stroke control.

12.
J Nanosci Nanotechnol ; 20(10): 5997-6006, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32384944

RESUMO

Tumor-targeted drug delivery systems represent challenging and widely investigated strategies to enhance cancer chemotherapy. In this study, we introduce a novel high-hydrophilic mesoporous silica nanoparticle system with a pH-sensitive drug release. The resultant composite nanoparticles appear as spheres of uniform size (450±25 nm) with a porous structure, which enables a high drug-loading ratio. Through modification of chitosan and polyethylene glycol monomethyl ether, the modified mesoporous silica was non-toxic to normal cells, but effective at inducing tumor cell death. With regard to the characteristics of drug release, the modified mesoporous silica clearly displayed a pH-stimulated release of the model drug doxorubicin hydrochloride in an acidic phosphate buffer solution (pH 4.0 and 6.0). The release was much greater than that observed in neutral or alkaline phosphate buffer solutions (pH 7.3 and 8.0). Furthermore, the release behavior was in accordance with the Higuchi model, indicating that this modified mesoporous silica drug delivery system can exhibit controlled release. The above results imply that the modified mesoporous silica is an effective drug delivery system for cancer therapy.


Assuntos
Nanopartículas , Dióxido de Silício , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polietilenoglicóis , Porosidade
13.
Artif Cells Nanomed Biotechnol ; 43(5): 345-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24620994

RESUMO

The influence of polyethylene glycol (PEG) molar ratio on the nanoparticles (NPs) properties is described herein. Especially, a facile and nondestructive determination route has been raised to quantify the hemoglobin (Hb) amounts in NPs via an internal standard FTIR method. The subsequent results indicated that, briefly, the PEG molar ratio did negligible influence on the size distribution of NPs, however, it did have great effect on the NPs zeta potential and hydrophilicity as well as the Hb loading amount. These findings highlight that the PEG density on the surface is a key parameter affecting the NPs properties.


Assuntos
Substitutos Sanguíneos/química , Hemoglobinas/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Bovinos , Nanopartículas/ultraestrutura , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Mater Sci Mater Med ; 21(1): 241-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19730991

RESUMO

Based on the penetrability of IR within the polymeric nanoparticles, a novel Fourier transform infrared spectroscopy (FTIR) method, with polyacrylonitrile (PAN) as the internal reference standard, was developed to quantify the hemoglobin (Hb) content in Hb-based polymeric nanoparticles (HbPN). The HbPN was fabricated by double emulsion method from poly(ethylene glycol)-poly(lactic acid)-poly(ethylene glycol) triblock copolymers. Depending on the characteristic un-overlapped IR absorbances at 1540 cm(-1) of Hb (amide II) and at 2241 cm(-1) of PAN(-C[triple bond]N), calibration equations, presenting the peak height ratio of Hb and PAN as a function of the weight ratio of Hb and PAN, were established. This new quantification method is validated and used to the determination Hb content in HbPN. Due to the good results of this calibration strategy, the proposed simple FTIR approach with minimal sample-needed and solvent-free makes it useful for routine analysis of protein content and could be also applied to any other drug/protein encapsulated particles.


Assuntos
Substitutos Sanguíneos/química , Hemoglobinas/análise , Nanopartículas/química , Polímeros/química , Animais , Substitutos Sanguíneos/farmacocinética , Substitutos Sanguíneos/normas , Calibragem , Bovinos , Eficiência , Hemoglobinas/farmacocinética , Hemoglobinas/normas , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/normas
15.
Biomed Microdevices ; 11(6): 1187-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19609680

RESUMO

The process of opsonization is the major biological barrier to the injectable polymeric nanoparticles (NPs). Complement protein is one kind of opsonins and it can be activated potentially by the negative charged particles. The fragment C3b generated by complement activation could subsequently induce the opsonization on the NPs surface. The aim of our work was to examine the relationship between the hydrophilic poly(ethylene glycol) (PEG) chain on the surface of NPs and particles longevity in vivo from the biological point of view such as complement activation (C3 cleavage) as well as uptake by macrophages. The studies showed that the introduction of PEG chains led to slightly smaller NPs with lower polydispersities than those prepared from naked poly(epsilon-caprolactone) (PCL) and enhanced the zeta potential of NPs from -27.17 mV to -6.046 mV. It was also found that PEG hydrophilic chain could decrease the C3 cleavage and remarkably suppress opsonization and phagocytosis subsequently. In biodistribution investigations in vivo, as a control, PCL NPs were present in MPS tissues in the first 5 min followed by metabolism elimination rapidly, whereas the PEGylated NPs had more particles blood retention in vivo after injection. In fact, in present work, it has been convinced that these results in vivo could be predicted by the in vitro fluorescent phagocytosis model and the extent of complement activation in advance.


Assuntos
Ativação do Complemento , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Complemento C3/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Sistema Fagocitário Mononuclear/metabolismo , Fagocitose , Poliésteres/farmacocinética , Distribuição Tecidual
16.
J Biomed Mater Res B Appl Biomater ; 91(2): 631-642, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19582859

RESUMO

Porosity and semipermeability, allowing life-sustaining small molecules to penetrate, but hemoglobin (Hb) and other enzymes to cut off, predominantly affect the functionalities of the Hb-loaded polymeric nanoparticles (HbPNPs) as blood substitutes. In this article, HbPNPs formulated in the size range of 110-122 nm were prepared by a modified double-emulsion method with poly(lactic acid) (PLA)-based polymers. The influences of the main preparation conditions, including solvent composition, stirring speed, Hb concentration and polymer matrix, on the porosity were investigated in details. To evaluate the porosity of HbPNPs, a novel nondestructive testing method based on molecular weight cut-off (MWCO) was developed, and an effusion approach was applied to investigate the pore size in the particle shells with poly(ethylene glycol)s (PEGs) of different molecular weights (PEG200, PEG400, PEG600) as probes. Moreover, in vitro diffusion behaviors of ascorbic acid and reduced glutathione from HbPNPs fabricated with various polymer matrices were studied. The MWCO of HbPNPs by changing solvent composition, stirring speed, Hb concentration, and polymer composition varied from 200 to 600, especially the PEGylation of the polymer, which exhibited obvious influence on the MWCO of HbPNPs. Ascorbic acid with molecular weight 176.1 could diffuse into PEGylated nanoparticles with mPEG content of 5-30 wt % freely, while reduced glutathione with molecular weight 307.3 could not penetrate when mPEG content reached 30 wt %. These results suggest that the HbPNPs optimized with MWCO between 400 and 600 can facilitate the transport of all those life-sustaining small molecules.


Assuntos
Substitutos Sanguíneos/química , Hemoglobinas/química , Polímeros/química , Ácido Ascórbico/química , Difusão , Composição de Medicamentos , Eletroquímica , Glutationa/química , Ácido Láctico , Espectroscopia de Ressonância Magnética , Peso Molecular , Nanopartículas , Tamanho da Partícula , Permeabilidade , Poliésteres , Polietilenoglicóis/química , Porosidade , Propriedades de Superfície
17.
Colloids Surf B Biointerfaces ; 72(2): 303-11, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19450955

RESUMO

The effect of the PEG-grafted degree in the range of 0-30% on the in vitro macrophage uptake and in vivo biodistribution of poly(ethylene glycol)-poly(lactic acid)-poly(ethylene glycol) (PELE) nanoparticles (NPs) were investigated in this paper. The prepared NPs were characterized in terms of size, zeta potential, hydrophilicity, poly(vinyl alcohol) (PVA) residual on nanoparticles surfaces as well as drug loading. The macrophage uptake and biodistribution including plasma clearance kinetics following intravenous administration in mice of the NPs labeled by 6-coumarin were evaluated. The results showed that, except for the particles size, the hydrophilicity, superficial charges and in vitro phagocytosis amount of NPs are dependent on the PEG content in the copolymers greatly. The higher of the PEG content, the more hydrophilicity and the nearer to neutral surface charge was observed. And the prolonged circulation half-life (t(1/2)) of the PELE NPs in plasma was also strongly depended on the PEG content with the similar trend. In particular for PELE30 (containing 30% of PEG content) NPs, with the lowest phagocytosis uptake accompanied the highest hydrophilicity and approximately neutral charge, it had the longest half-life in vivo with almost 12-fold longer and accumulation in the reticuloendothelial system organs close to 1/2-fold lower than those of reference PLA. These results demonstrated that the PELE30 NPs with neutral charge and suitable size has a promising potential as a long-circulating oxygen carrier system with desirable biocompatibility and biofunctionality.


Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Polietilenoglicóis/síntese química , Polímeros/síntese química , Animais , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Macrófagos/metabolismo , Camundongos , Propriedades de Superfície
18.
Int J Pharm ; 377(1-2): 199-206, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19454305

RESUMO

The aim of this study was to investigate the effects of the surface charges on the in vitro macrophage cellular uptake and in vivo blood clearance and biodistribution of the hemoglobin-loaded polymeric nanoparticles (HbPNPs). The surface charges of the HbPNPs fabricated from mPEG-PLA-mPEG were modulated with cationized cetyltrimethylammonium bromide (CTAB) and anionized sodium dodecyl sulphate (SDS), respectively. In vitro macrophage cellular uptake and in vivo biodistribution of the coumarin 6-labeled HbPNPs with different electric charges were investigated, and the half-lives in the circulation were pharmacokinetically analyzed. The particle sizes of the HbPNPs were all below 200 nm with a narrow size distribution and high encapsulation efficiency (>84%). And the zeta-potentials of the untreated, cationized and anionized HbPNPs in phosphate buffered sodium chloride solution (PBS) were -12.3, +3.28 and -25.4 mV, respectively. The HbPNPs did not occur significant aggregation or sedimentation, even after 5 days. Compared with the untreated HbPNPs, 1-fold decrease/increase of the uptake percentage associated with the cationized/anionized HbPNPs was observed. In vivo experiment demonstrated that the calculated half-life of the cationized HbPNPs was 10.991 h, 8-fold longer than that of the untreated HbPNPs (1.198 h). But the anionized HbPNPs displayed opposite effect. Furthermore, the cationized HbPNPs mainly accumulated in the liver, lung and spleen after 48 h injection. MTT results showed that the HbPNPs with different surface charges all exhibited slight toxicity. These results demonstrated that the CTAB-modulated HbPNPs with low positive charge and suitable size have a promising potential as a long-circulating oxygen carrier system with desirable biocompatibility and biofunctionality.


Assuntos
Portadores de Fármacos , Hemoglobinas , Nanopartículas/administração & dosagem , Oxigênio/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Hemoglobinas/administração & dosagem , Hemoglobinas/farmacocinética , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/síntese química , Polímeros/farmacocinética , Propriedades de Superfície , Tecnologia Farmacêutica/métodos
19.
J Mater Sci Mater Med ; 20(9): 1881-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19365612

RESUMO

The aim of the present work is to investigate the effect of PEG content in copolymer on physicochemical properties, in vitro macrophage uptake, in vivo pharmacokinetics and biodistribution of poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) hemoglobin (Hb)-loaded nanoparticles (HbP) used as blood substitutes. The HbP were prepared from PLA and PLA-PEG copolymer of varying PEG contents (5, 10, and 20 wt%) by a modified w/o/w method and characterized with regard to their morphology, size, surface charge, drug loading, surface hydrophilicity, and PEG coating efficiency. The in vitro macrophage uptake, in vivo pharmacokinetics, and biodistribution following intravenous administration in mice of HbP labeled with 6-coumarin, were evaluated. The HbP prepared were all in the range of 100-200 nm with highest encapsulation efficiency 87.89%, surface charge -10 to -33 mV, static contact angle from 54.25 degrees to 68.27 degrees , and PEG coating efficiency higher than 80%. Compared with PLA HbP, PEGylation could notably avoid the macrophage uptake of HbP, in particular when the PEG content was 10 wt%, a minimum uptake (6.76%) was achieved after 1 h cultivation. In vivo, besides plasma, the major cumulative organ was the liver. All PLA-PEG HbP exhibited dramatically prolonged blood circulation and reduced liver accumulation, compared with the corresponding PLA HbP. The PEG content in copolymer affected significantly the survival time in blood. Optimum PEG coating (10 wt%) appeared to exist leading to the most prolonged blood circulation of PLA-PEG HbP, with a half-life of 34.3 h, much longer than that obtained by others (24.2 h). These results demonstrated that PEG 10 wt% modified PLA HbP with suitable size, surface charge, and surface hydrophilicity, has a promising potential as long-circulating oxygen carriers with desirable biocompatibility and biofunctionality.


Assuntos
Substitutos Sanguíneos/química , Hemoglobinas/química , Ácido Láctico/química , Macrófagos/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Animais , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos , Técnicas In Vitro , Camundongos , Nanotecnologia/métodos , Fagocitose , Poliésteres , Temperatura , Fatores de Tempo
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(1): 116-21, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19334568

RESUMO

On the basis of previous researches, we have prepared Bovine hemoglobin-loaded nanoparticles (HbP), using the double emulsion method. More mild dispersing treatment was employed during the primary and secondary emulsion; over 97% encapsulation efficiency (EE%) and an average size about 286 nm were achieved by using surfactants, screening solvents, as well as avoiding the traditional strong dispersing process. The value of Hydrophile-lipophile balance in oil phase exerted a significant effect on EE% and led to higher EE% when matched with the surfactants in outer aqueous phase. When compared with the sole solvent Span80, the mixed surfactants such as Poloxemer188/Span80 stabilized the emulsion more efficiently and increased the EE%. The higher concentration of surfactants resulted in higher EE% and narrower size distribution. But over some amount, the surfactants had no significant effect on EE%, resulting in larger size and polydispersity index (PDI). The appropriate removal rate of solvents contributes to higher EE%, smaller size and PDI.


Assuntos
Substitutos Sanguíneos , Hemoglobinas/química , Nanopartículas , Tensoativos/química , Animais , Materiais Biocompatíveis , Substitutos Sanguíneos/síntese química , Substitutos Sanguíneos/química , Bovinos , Emulsões , Humanos , Tamanho da Partícula , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA