Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5224, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064838

RESUMO

Advancements of virtual reality technology pave the way for developing wearable devices to enable somatosensory sensation, which can bring more comprehensive perception and feedback in the metaverse-based virtual society. Here, we propose augmented tactile-perception and haptic-feedback rings with multimodal sensing and feedback capabilities. This highly integrated ring consists of triboelectric and pyroelectric sensors for tactile and temperature perception, and vibrators and nichrome heaters for vibro- and thermo-haptic feedback. All these components integrated on the ring can be directly driven by a custom wireless platform of low power consumption for wearable/portable scenarios. With voltage integration processing, high-resolution continuous finger motion tracking is achieved via the triboelectric tactile sensor, which also contributes to superior performance in gesture/object recognition with artificial intelligence analysis. By fusing the multimodal sensing and feedback functions, an interactive metaverse platform with cross-space perception capability is successfully achieved, giving people a face-to-face like immersive virtual social experience.


Assuntos
Inteligência Artificial , Percepção do Tato , Retroalimentação , Tecnologia Háptica , Humanos , Tato
2.
ACS Nano ; 15(11): 18312-18326, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34723468

RESUMO

To enable smart homes and relative applications, the floor monitoring system with embedded triboelectric sensors has been proven as an effective paradigm to capture the ample sensory information from our daily activities, without the camera-associated privacy concerns. Yet the inherent limitations of triboelectric sensors such as high susceptibility to humidity and long-term stability remain a great challenge to develop a reliable floor monitoring system. Here we develop a robust and smart floor monitoring system through the synergistic integration of highly reliable triboelectric coding mats and deep-learning-assisted data analytics. Two quaternary coding electrodes are configured, and their outputs are normalized with respect to a reference electrode, leading to highly stable detection that is not affected by the ambient parameters and operation manners. Besides, due to the universal electrode pattern design, all the floor mats can be screen-printed with only one mask, rendering higher facileness and cost-effectiveness. Then a distinctive coding can be implemented to each floor mat through external wiring, which permits the parallel-array connection to minimize the output terminals and system complexity. Further integrating with deep-learning-assisted data analytics, a smart floor monitoring system is realized for various smart home monitoring and interactions, including position/trajectory tracking, identity recognition, and automatic controls. Hence, the developed low-cost, large-area, reliable, and smart floor monitoring system shows a promising advancement of floor sensing technology in smart home applications.


Assuntos
Inteligência Artificial , Tecnologia sem Fio , Atenção à Saúde , Monitorização Fisiológica
3.
Adv Sci (Weinh) ; 8(14): e2100230, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34037331

RESUMO

Rapid advancements of artificial intelligence of things (AIoT) technology pave the way for developing a digital-twin-based remote interactive system for advanced robotic-enabled industrial automation and virtual shopping. The embedded multifunctional perception system is urged for better interaction and user experience. To realize such a system, a smart soft robotic manipulator is presented that consists of a triboelectric nanogenerator tactile (T-TENG) and length (L-TENG) sensor, as well as a poly(vinylidene fluoride) (PVDF) pyroelectric temperature sensor. With the aid of machine learning (ML) for data processing, the fusion of the T-TENG and L-TENG sensors can realize the automatic recognition of the grasped objects with the accuracy of 97.143% for 28 different shapes of objects, while the temperature distribution can also be obtained through the pyroelectric sensor. By leveraging the IoT and artificial intelligence (AI) analytics, a digital-twin-based virtual shop is successfully implemented to provide the users with real-time feedback about the details of the product. In general, by offering a more immersive experience in human-machine interactions, the proposed remote interactive system shows the great potential of being the advanced human-machine interface for the applications of the unmanned working space.

4.
Nat Commun ; 11(1): 4609, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929087

RESUMO

Toward smart building and smart home, floor as one of our most frequently interactive interfaces can be implemented with embedded sensors to extract abundant sensory information without the video-taken concerns. Yet the previously developed floor sensors are normally of small scale, high implementation cost, large power consumption, and complicated device configuration. Here we show a smart floor monitoring system through the integration of self-powered triboelectric floor mats and deep learning-based data analytics. The floor mats are fabricated with unique "identity" electrode patterns using a low-cost and highly scalable screen printing technique, enabling a parallel connection to reduce the system complexity and the deep-learning computational cost. The stepping position, activity status, and identity information can be determined according to the instant sensory data analytics. This developed smart floor technology can establish the foundation using floor as the functional interface for diverse applications in smart building/home, e.g., intelligent automation, healthcare, and security.

5.
Sci Rep ; 6: 22253, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905285

RESUMO

Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m(-2). Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa(-1). The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production.

6.
Opt Express ; 22 Suppl 7: A1835-42, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607497

RESUMO

Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...