Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049221

RESUMO

Due to the accumulated fatigue damage in steel-concrete continuous composite box beams, a plastic hinge forms in the negative moment zone, leading to significant internal force redistribution. To investigate the internal force redistribution in the negative moment zone and confirm structural safety under fatigue loading, experimental tests were conducted on nine steel-concrete continuous composite box beams: eight of them under fatigue testing, one of them under static testing. The test results showed that the moment modification coefficient at the middle support increases during the fatigue process. When approaching fatigue failure, an increase of 1.0% in the reinforcement ratio or 0.27% in the stirrup ratio results in a reduction of 13% in the moment modification coefficient. Furthermore, a quadratic function model was proposed to calculate the moment modification coefficient of a steel-concrete continuous composite box beam during the fatigue process, which exhibited good agreement with the experimental results. Finally, we verified the applicability of the plastic hinge rotation theory for steel-concrete continuous composite box beams under fatigue loading.

2.
Materials (Basel) ; 14(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34639961

RESUMO

The objective of this study is to investigate the mechanical properties and the composite action of circular concrete-filled steel tube (CFST) columns subjected to compression-torsion load using finite element model analysis. Load-strain (T-γ) curves, normal stress, shear stress, and the composite action between the steel tubes and the interior concrete were analyzed based on the verified 3D finite element models. The results indicate that with the increase of axial force, the maximum shear stress at the core concrete increased significantly, and the maximum shear stress of the steel tubes gradually decreased. Meanwhile, the torsional bearing capacity of the column increased at first and then decreased. The torque share in the columns changed from the tube-sharing domain to the concrete-sharing domain, while the axial force of the steel tube remained unchanged. Practical design equations for the torsional capacity of axially loaded circular CFST columns were proposed based on the parametric analysis. The accuracy and validity of the proposed equations were verified against the collected experimental results.

3.
Materials (Basel) ; 14(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576555

RESUMO

Existing experimental research on bond properties of the interface between Carbon Fiber Reinforced Polymer (CFRP) and damaged concrete is limited, although CFRP strengthening technology has been widely used for corroded reinforced concrete structures. This work investigated the bond behavior of CFRP to the corrosion-cracked concrete interface, in which three factors were considered for experimentation, including corrosion degree, concrete strength and concrete cover thickness. The tests were conducted by developing a self-balancing double shear lap test device. In addition, a corrosion scene was provided simultaneously to simulate the external corrosion environment. The results showed that three peeling modes of CFRP sheets were observed with respect to corrosion degrees of the steel bars. The effects of the three factors on the stripping bearing capacity and effective bond length of CFRP sheets were discussed by systematic parametric analysis. Finally, a nonlinear degenerate law of CFRP-to-concrete interface considering the corrosion degree was improved and verified in this study.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1775-80, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24059173

RESUMO

The present paper tried to evaluate the effectiveness and improvement of variable selection before modeling with partial least squares regression (PLSR). Based on the independent test dataset, and compared with the PLSR model derived from all spectral variables, the prediction accuracy by modeling after variable selection has been improved. Thus, the results showed that variable selection was beneficial and necessary for soil carbon modeling by on-the-go NIRS. UVE (uninformative variable elimination) and UVE-SPA (successive projection algorithm) could perform effective variable selection and created promising models, and SPA and GA-PLS (genetic algorithm PLS) failed to make appropriate models. For synergy interval PLS (siPLS), change in interval number and number of interval for modeling could affect the prediction accuracy obviously. Promising models could be made by selecting appropriate interval number and number of interval for modeling, and siPLS could achieve similar prediction accuracy to UVE or UVE-SPA, and the shortcoming was that siPLS required a lot of computing time to find optimal combination of intervals for modeling.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(6): 1526-30, 2009 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-19810523

RESUMO

Near infrared spectroscopy (NIRS) is a rapid, pioximal-sensed method that has proven useful in quantifying soil constituents mainly in laboratory. However, very little is known about how NIRS performs in a field setting by newly developed on-the-go NIRS measurements. The objective of the present study was to evaluate the relationship between on-the-go field NIRS measurements and soil texture in a glacial till soil. It was found that NIRS band combination based on difference, normalized difference and ratio could apparently improve the coefficient of relationship between NIRS and soil texture, and this might be a new and effective analytical procedure for field NIRS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...