Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomark Res ; 12(1): 41, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644503

RESUMO

Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.

2.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38519399

RESUMO

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Assuntos
Antineoplásicos , Neoplasias da Vesícula Biliar , Estruturas Metalorgânicas , Proteínas Tirosina Quinases , Pirimidinonas , Proteína Supressora de Tumor p53 , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Tirosina Quinases/antagonistas & inibidores , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Mutações Sintéticas Letais , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação , Camundongos Nus , Dano ao DNA/efeitos dos fármacos , Feminino
3.
Nat Commun ; 14(1): 5699, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709778

RESUMO

Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luminescência
4.
Molecules ; 18(11): 13979-91, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24232735

RESUMO

In this study, hydroxyapatite (HAP) was surface-modified by the addition of ß-alanine (ß-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-ß-alanine-poly(γ-benzyl-L-glutamate) (HAP-PBLG) was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR) spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM) indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH2 crystals. Furthermore, ¹H-NMR spectra and FTIR spectra revealed that hydroxyapatite-ß-alanine-poly (L-glutamic acid) (HAP-PLGA) was able to successfully bear carboxylic acid groups on its side chains.


Assuntos
Anidridos/química , Durapatita/química , Glutamatos/química , Ácido Poliglutâmico/análogos & derivados , beta-Alanina/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Ácido Poliglutâmico/química , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...