Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Acad Orthop Surg ; 16 Suppl 1: S68-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18612017

RESUMO

Potential systemic markers of implant wear include products of the wear process (particles and ions) and mediators of the inflammatory reaction that can be induced by wear. Ions from polymers used in arthroplasty are not specific, but high metal ion levels may help identify patients with unexpectedly high wear of metal-on-metal implants. The kinetics of ion production, transport, and excretion are complex, however, so it is currently difficult to interpret the significance of mild elevations in metal ions. Indices of bone turnover (eg, collagen fragments) and mediators involved in the inflammatory reaction to particles (eg, osteoprotegerin, RANKL, interleukins) may be associated with osteolysis, but systemic disorders (eg, osteoarthritis) and the use of medications that influence bone remodeling limit the predictive value of these analytes with respect to the consequences of implant wear. Using genomic and proteomic methods to measure multiple analytes offers promise, but the challenge is to identify markers specifically associated with wear that are not elevated by other conditions that often coexist in this patient population.


Assuntos
Artroplastia de Quadril/efeitos adversos , Reação a Corpo Estranho/diagnóstico , Prótese de Quadril , Osteólise/diagnóstico , Falha de Prótese , Artroplastia de Quadril/instrumentação , Biomarcadores/sangue , Reação a Corpo Estranho/imunologia , Humanos , Fatores Imunológicos/sangue , Metais/sangue , Osteólise/etiologia , Osteólise/imunologia , Desenho de Prótese , Estresse Mecânico
2.
J Biomed Mater Res A ; 84(2): 464-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17618502

RESUMO

Aseptic loosening of total joint replacements is believed to be initiated by a macrophage response to prosthetic wear debris. To better characterize the early response to clinically relevant wear debris, we challenged primary human macrophages from four donors with ultra high molecular weight polyethylene (UHMWPE), TiAlV, CoCr, and alumina particles. After a 24-h culture, protein arrays were used to quantify the secretion of 30 different cytokines and chemokines. Macrophages secreted detectable levels of nine mediators in culture: Interleukin-1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), IL-1beta, MCP-1, IL-8, IL-6, GM-CSF, IL-10, and IL-12p40. TiAlV particles were the most stimulatory, causing 5- to 900-fold higher cytokine expression compared with nonstimulated cells and uniquely eliciting high levels of IL-1alpha, IL-6, IL-10, and GM-CSF. CoCr and alumina were mildly stimulatory and typically elicited two- to fivefold greater levels than nonstimulated cells. Surprisingly, UHMWPE did not elicit a significant increase in cytokine release. Our data suggests that IL-1alpha, TNF-alpha, IL-1beta, and MCP-1 are the primary initiators of osteolysis and implicates metallic debris as an important trigger for their release.


Assuntos
Óxido de Alumínio/farmacologia , Ligas de Cromo/farmacologia , Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Polietilenos/farmacologia , Titânio/farmacologia , Ligas , Células Cultivadas , Quimiocinas/biossíntese , Interpretação Estatística de Dados , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Nanopartículas , Tamanho da Partícula , Material Particulado , Análise Serial de Proteínas
3.
Biomaterials ; 28(24): 3549-59, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17498799

RESUMO

The long-term durability of total joint replacements is critically dependent on adequate peri-implant bone stock, which can be compromised by wear debris-mediated osteolysis. This study investigated the effects of bisphosphonates on enhancing peri-implant bone in the presence of clinically relevant ultra-high molecular weight polyethylene (UHMWPE) wear debris. Fiber-mesh coated titanium-alloy plugs were implanted bilaterally in the femoral condyles of 36 New Zealand white rabbits. Implants in the left femora were covered with submicron UHMWPE particles during surgery. Rabbits were administered either no drug, subcutaneous alendronate weekly (1.0mg/kg/week) or a single dose of intravenous zoledronate (0.015mg/kg). A total of 6/12 rabbits in each group were sacrificed at 6 weeks and the remainder at 12 weeks postoperatively. Peri-implant bone stock was analyzed radiographically and histomorphometrically. Radiographically, both bisphosphonates significantly increased periprosthetic cortical thickness at 6 weeks (p<0.0001; alendronate: +18%; zoledronate: +11%) and at 12 weeks (p=0.001; alendronate: +17%; zoledronate:+19%). Histomorphometrically, alendronate and zoledronate raised peri-implant bone volume (BV/TV) up to 2-fold after 6 weeks without added wear debris and more than 3-fold when wear debris was present. Furthermore a 6-week bisphosphonate treatment increased osteoid thickness in the absence of wear debris (alendronate: +132%, p=0.007; zoledronate: +67%, p=0.51) and in the presence of wear debris (alendronate: +134%, p=0.023; zoledronate: +138%, p=0.016). In summary, alendronate and zoledronate treatment increased periprosthetic bone stock in a rabbit femoral model, particularly in the presence of UHMWPE wear debris. These new findings suggest that bisphosphonates may more than compensate for the well-documented negative effects of wear debris on peri-implant bone stock. The combined antiresorptive and osteoanabolic effects of bisphosphonates on periprosthetic bone stock may have an important role for critically improving the biological fixation and ultimate durability of total joint arthroplasty.


Assuntos
Anabolizantes/farmacologia , Osso e Ossos/efeitos dos fármacos , Difosfonatos/farmacologia , Animais , Coelhos
4.
J Bone Joint Surg Am ; 89(5): 1081-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17473147

RESUMO

BACKGROUND: Previous studies of bone resorption around failed joint replacements have focused on a limited number of cytokines, primarily tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1, and IL-6, with use of enzyme-linked immunosorbent assay and immunohistochemistry techniques. In this study, we utilized high-throughput protein chips to profile twenty-nine inflammatory cytokines around failed total joint replacements. METHODS: Peri-implant granulomatous tissues were harvested from around the failed total hip prostheses of thirteen patients. Synovial lining capsular tissues from thirteen patients with end-stage degenerative joint disease were used as controls. After homogenization, twenty-nine cytokines were quantified with use of high-throughput protein chips. RESULTS: IL-6 and IL-8 were found consistently in failed joint replacement tissues, reaffirming their prominent role in osteoclastogenesis and end-stage bone resorption. High levels of interferon-gamma-inducible protein of 10 kDa (IP-10) and monokine induced by interferon-gamma (MIG), both chemoattractants of activated Th1 lymphocytes, were also detected. Soluble intercellular adhesion molecule (sICAM) and transforming growth factor-beta1 (TGF-beta(1)) were not detected universally, nor were TNF-alpha or IL-1. After a twenty-four-hour organ culture, IL-1beta levels increased substantially along with those of other mediators. We measured but did not detect any activators of cytotoxic T-cells, antibody-producing Bcells, or eosinophils involved in delayed-type hypersensitivity. Variations from patient to patient were seen across all cytokines and highlight the unique response of individual patients to their joint replacements. CONCLUSIONS: In failed total joint replacements in patients with end-stage osteolysis, IL-6 and IL-8 may be the primary drivers of osteoclastogenesis. The presence of IP-10 and MIG imply a role for T-cells, while TGF-beta(1) and sICAM may represent a systemic attempt to modulate the inflammation. TNF-alpha and IL-1 do not appear to play a major role in the end stages of the disease.


Assuntos
Citocinas/análise , Prótese de Quadril , Osteólise/diagnóstico , Análise Serial de Proteínas , Artroplastia de Quadril , Feminino , Humanos , Molécula 1 de Adesão Intercelular/análise , Interleucina-6/análise , Interleucina-8/análise , Masculino , Proteína Cofatora de Membrana/análise , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Falha de Prótese , Receptores de IgE/análise
5.
Clin Orthop Relat Res ; 453: 254-64, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17016218

RESUMO

Osteolysis remains a common mode of total hip arthroplasty failure. In vitro and animal models have been used to determine the pathophysiology of osteolysis by carefully dissecting the biochemical pathways leading to particulate wear debris and periprosthetic bone loss. Numerous cytokines and inflammatory mediators, including TNF-alpha and IL-1, are critical participants in this cascade and may represent prime targets for pharmacologic intervention. Osteoclasts, the end effector cells involved in the osteolytic process, also represent potential targets. Cell surface receptors on osteoclast precursors, such as receptor activator of NF-kappaB (RANK) (on osteoclasts) and RANK-ligand (RANKL) (on stromal cells), provide opportunities to arrest osteoclast maturation. Enhancing the naturally occurring osteoprotegerin is another recent attempt at modulating osteoclast behavior and a possible target for pharmacologic therapies. Other nonoperative strategies include intercepting tumor necrosis factor-alpha activity, interfering with the RANK-RANKL interaction necessary for osteoclast development and maturation, bisphosphonate therapy, and using viral vectors to deliver genes. Although each of these approaches has potential benefits, there are substantial challenges to effective implementation. Until there is convincing evidence of efficacy in human clinical trials, we recommend vigilant screening and appropriate surgery with component loosening or substantial likelihood of loosening, periprosthetic fracture, or major bone loss.


Assuntos
Artroplastia de Quadril/efeitos adversos , Osteólise/tratamento farmacológico , Animais , Humanos , Osteólise/etiologia , Osteólise/fisiopatologia
6.
J Am Acad Orthop Surg ; 14(4): 215-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16585363

RESUMO

Total joint arthroplasty is very effective for improving the quality of life of patients with end-stage arthritis. Despite advances in materials, surgical technique, and rehabilitation regimens, joint replacements are still fraught with complications leading to their premature failure. Aseptic loosening and osteolysis are the primary causes of implant failure. Other reasons include early migration of components leading to instability, lack of ingrowth into implant porosities, and bone loss caused by stress shielding. Pharmaceutical agents used for preventing and managing postmenopausal osteoporosis (eg, bisphosphonates) may in the future play an important role in improving the long-term duration of joint arthroplasties. Early findings indicate that bisphosphonates upregulate bone morphogenetic protein-2 production and stimulate new bone formation. Because of their anabolic effect on osteoblasts, bisphosphonates have the potential to enhance bone ingrowth into implant porosities, prevent bone resorption under adverse conditions, and dramatically extend the long-term durability of joint arthroplasties. The long-term effects of bisphosphonate use on the mechanical properties of bone have not been adequately investigated. Along with improvements in implant design and material properties, bisphosphonates and other pharmaceutical agents may, in the near future, be part of the growing armamentarium that provides more durable joint arthroplasties.


Assuntos
Artroplastia do Joelho , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Repouso em Cama/efeitos adversos , Conservadores da Densidade Óssea/farmacologia , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Difosfonatos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/prevenção & controle , Falha de Prótese , Fator de Crescimento Transformador beta/metabolismo
7.
Biomaterials ; 27(5): 752-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16112725

RESUMO

A total of 750 images of individual ultra-high molecular weight polyethylene (UHMWPE) particles isolated from periprosthetic failed hip, knee, and shoulder arthroplasties were extracted from archival scanning electron micrographs. Particle size and morphology was subsequently analyzed using computerized image analysis software utilizing five descriptors found in ASTM F1877-98, a standard for quantitative description of wear debris. An online survey application was developed to display particle images, and allowed ten respondents to classify particle morphologies according to commonly used terminology as fibers, flakes, or granules. Particles were categorized based on a simple majority of responses. All descriptors were evaluated using a one-way ANOVA and Tukey-Kramer test for all-pairs comparison among each class of particles. A logistic regression model using half of the particles included in the survey was then used to develop a mathematical scheme to predict whether a given particle should be classified as a fiber, flake, or granule based on its quantitative measurements. The validity of the model was then assessed using the other half of the survey particles and compared with human responses. Comparison of the quantitative measurements of isolated particles showed that the morphologies of each particle type classified by respondents were statistically different from one another (p<0.05). The average agreement between mathematical prediction and human respondents was 83.5% (standard error 0.16%). These data suggest that computerized descriptors can be feasibly correlated with subjective terminology, thus providing a basis for a common vocabulary for particle description which can be translated into quantitative dimensions.


Assuntos
Prótese Articular , Polietilenos/química , Tamanho da Partícula , Polietilenos/classificação
8.
J Biomed Mater Res B Appl Biomater ; 76(1): 143-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16047323

RESUMO

Alendronate and other bisphosphonates are clinically efficacious in treating postmenopausal osteoporosis, Paget's disease and hypercalcemia associated with malignancy. Because bisphosphonates are being considered for use in younger patients with joint replacements to prevent osteolysis, and for stress fracture prophylaxis in military recruits, it is important to know how bisphosphonate therapy affects healthy bone. We sought to determine whether bones from healthy male dogs exhibit alterations in structural or mechanical properties following alendronate treatment for 23 weeks. We tested trabecular tissue samples in compression and determined tissue ash density. We tested whole long bones in bending and torsion. For trabecular samples, we evaluated trabecular modulus, strength, and density. For whole bone specimens, we compared structural stiffness and ultimate load. We found no significant differences in any measure, between canines treated with alendronate for 23 weeks and controls, although we found consistent trends toward higher properties in the treated group. Correlation analysis revealed significant relationships between stiffness and strength measures for each mechanical test. Our results indicate bisphosphonate treatment in healthy canines does not weaken the properties of bone. The trends indicate a slight positive overall effect of alendronate treatment on the mechanical properties of healthy canine bone.


Assuntos
Alendronato/farmacologia , Osso e Ossos/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Cães , Masculino
9.
Biomaterials ; 26(34): 6941-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16009417

RESUMO

Bisphosphonates are well known potent inhibitors of osteoclast activity and are widely used to treat metabolic bone diseases. Recent evidence from in vitro and in vivo studies indicates that bisphosphonates may additionally promote osteoblastic bone formation. In this study, we evaluated the effects of three FDA-approved and clinically utilized bisphosphonates, on the proliferation and osteogenic differentiation of human bone marrow stromal cells (BMSC). BMSC were obtained from patients undergoing primary total hip arthroplasty for end-stage degenerative joint disease. Cells were treated with or without a bisphosphonate (alendronate, risedronate, or zoledronate) and analyzed over 21 days of culture. Cell proliferation was determined by direct cell counting. Osteogenic differentiation of BMSC was assessed with alkaline phosphatase bioassay and gene expression analyses using conventional RT-PCR as well as real-time quantitative RT-PCR. All bisphosphonates tested enhanced the proliferation of BMSC after 7 and 14 days of culture. Steady-state mRNA levels of key genes involved in osteogenic differentiation such as bone morphogenetic protein-2 (BMP-2), bone sialoprotein-II, core-binding factor alpha subunit 1 (cbfa1) and type 1 collagen, were generally increased by bisphosphonate treatment in a type- and time-dependent manner. Gene expression levels varied among the different donors. Enhancement of osteogenic differentiation was most pronounced after 14 days of culture, particularly following zoledronate treatment (p < 0.05 for BMP-2). In conclusion, using a clinically relevant in vitro model we have demonstrated that bisphosphonates enhance proliferation of BMSC and initiate osteoblastic differentiation. When administered around joint replacements, bisphosphonates may potentially compensate for the deleterious effects of particulate wear debris at the bone-implant interface, by encouraging increased numbers of cells committed to the osteoblastic phenotype, and thus improve the longevity of joint replacements.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Difosfonatos/farmacologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia
10.
Biomaterials ; 26(16): 2933-45, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15603788

RESUMO

The most common cause of total joint replacement failure is peri-implant bone loss causing pain and prosthesis loosening. This process, known as osteolysis or aseptic loosening, is characterized by macrophage phagocytosis of particulate implant wear debris. In an incompletely defined step, particulate biomaterial debris induces macrophages to release a variety of inflammatory mediators and signaling proteins that lead to bone loss. In an in vitro model of this process, we used microarray technology and data analysis techniques, including the use of self-organizing maps (SOMs), to understand the mRNA gene expression changes occurring in macrophages exposed to clinically relevant particles of ultra-high molecular weight polyethylene and TiAlV alloy. Earlier studies have been limited by technology that only allowed analysis of a few genes at a time, but the microarray techniques used in this paper generate the quantitative analysis of over a thousand genes simultaneously. Our microarray analysis utilized an SOM clustering to elucidate general patterns in the data, lists of top up- and down-regulated genes for each time point and genes with differential expression under different biomaterial exposures. The expression levels of the majority of genes (>95%) did not vary over time or with exposure to different biomaterials, but a few important genes, such as TNF-alpha, IL-1beta, IL-6, and MIP1alpha, proved to be highly regulated in response to biomaterial exposure. We also uncovered a novel set of genes, which not only validates and logically extends the current model of the pathogenesis of osteolysis and aseptic loosening, but also provides new targets for further research and therapeutics.


Assuntos
Materiais Biocompatíveis/farmacologia , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Titânio/química , Algoritmos , Ligas/metabolismo , Análise por Conglomerados , DNA Complementar/metabolismo , Regulação para Baixo , Humanos , Processamento de Imagem Assistida por Computador , Inflamação , Ligantes , Macrófagos/metabolismo , Masculino , Monócitos/metabolismo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Osteólise , Fagocitose , Polietileno/química , Polietilenos/química , Falha de Prótese , RNA Mensageiro/metabolismo , Transdução de Sinais , Estatística como Assunto/métodos , Fatores de Tempo , Regulação para Cima
11.
Biomaterials ; 25(18): 4105-15, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15046901

RESUMO

Aseptic loosening and osteolysis are currently the most common causes of failure of total joint replacements. Osteolysis is initiated by a macrophage response to wear debris, resulting in localized, osteoclastic peri-implant bone loss. We have previously inhibited osteoclast-mediated bone resorption in a canine total hip arthroplasty model using oral bisphosphonate therapy. Based on serendipitous observations from our canine study, we hypothesized that bisphosphonates have an anabolic effect on osteoblasts, in a manner distinct from their inhibitory effect on osteoclastic bone resorption. We studied the anabolic effects of two FDA-approved bisphosphonates (alendronate and risedronate) on two in vitro models: a primary human trabecular bone cell culture and the MG-63 osteoblast-like cell line. Following treatment with bisphosphonates at varying concentrations and time periods, cells were assayed for proliferation effects and results were quantified using the methods of direct cell count, and the colorimetric MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay at 24, 48, and 72 h. The effect of bisphosphonates on the maturation of osteoblasts were tested with alkaline phosphatase bioassay and reverse transcription-polymerase chain reaction for markers of osteoblast differentiation. Results from both the primary human trabecular bone cell culture and the MG-63 osteoblast-like cell line showed that both bisphosphonates significantly increased the cell number over controls, attaining peak levels at a concentration of 10(-8)M. Alkaline phosphatase activity was also increased, representing earlier commitment of osteoprogenitor cells towards the osteoblastic phenotype. Bisphosphonates also enhanced gene expression of BMP-2, Type I collagen and osteocalcin. In summary, bisphosphonates, aside from their role as inhibitors of osteoclastic bone resorption, are promoters of osteoblast proliferation and maturation.


Assuntos
Alendronato/farmacologia , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Osteoblastos/citologia , Osteoblastos/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Difosfonatos/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Osteoblastos/efeitos dos fármacos , Ácido Risedrônico
12.
Biomaterials ; 24(15): 2561-73, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12726710

RESUMO

To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.


Assuntos
Materiais Biocompatíveis , Reação a Corpo Estranho , Macrófagos/imunologia , Polietilenos , Animais , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Células Cultivadas , Ligas de Cromo , Citocinas/genética , Citocinas/metabolismo , Humanos , Macrófagos/citologia , Teste de Materiais , Camundongos , Monócitos/citologia , Monócitos/imunologia , Polietilenos/química , RNA/metabolismo , Titânio/química
13.
J Orthop Res ; 20(4): 704-13, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12168658

RESUMO

Numerous in vitro models have demonstrated the capacity of wear particles to stimulate the release of soluble pro-inflammatory products with the ability to induce local bone resorption. Recent observations have demonstrated that binding of lipopolysaccharide (LPS) to particulate wear debris can significantly modulate the pattern of cell response in the in vitro models. These findings raise concerns over the possible role of LPS in the pathogenesis of aseptic loosening after total joint replacements, and also indicates the importance of controlling for possible confounding effects of LPS contamination in the in vitro models used to study the reactive nature of wear debris. Our studies were undertaken to rigorously analyze the effects of particle-associated LPS on cell responses and to assess the efficacy of different treatment protocols to inactivate LPS associated with different particulate materials. Particles of cobalt-chrome alloy, titanium-6-aluminum-4-vanadium, titanium nitride and silica were pretreated with LPS and exposed to multiple treatment protocols. When cells were treated with "as-received" particles prepared by washing in ethanol, small amounts of TNF-alpha, IL-1beta. and IL-1alpha were detected. In contrast, all particle species pretreated with LPS produced marked increases in TNF-alpha, IL-1alpha, and IL-1beta release, as well as upregulation of corresponding mRNA levels even after ethanol washing. Boiling the LPS-pretreated particles in 1% acetic acid or autoclaving and baking the particles also markedly reduced and in some instances abolished the effect of the LPS-pretreatment. This indicates that LPS binds to the surface of particles of diverse composition and that the bound LPS is biologically active. Treatment protocols to inactivate particle-associated LPS demonstrated significant differences in efficacy. When the most rigorous treatments were utilized, essentially all LPS activity could be eliminated. Particles treated with these methods retained some capacity to stimulate cytokine release, but activities were markedly reduced. These results provide further evidence indicating that LPS contamination of particulate materials can markedly enhance their biological activity. This potential confounding effect needs to be carefully monitored and controlled in the in vitro model systems used to evaluate wear particles. Furthermore, the presence of particle-associated endotoxin at the bone-implant interface in vivo could markedly enhance the adverse biological activity of particulate wear debris.


Assuntos
Citocinas/biossíntese , Lipopolissacarídeos/farmacologia , Procedimentos Ortopédicos , Adsorção , Animais , Linhagem Celular , Citocinas/genética , Camundongos , Próteses e Implantes , RNA Mensageiro/análise , Dióxido de Silício/farmacologia , Titânio/farmacologia
14.
Am J Ther ; 3(1): 27-41, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11856995

RESUMO

Total hip arthroplasty (THA) has provided dramatic pain relief and improvement in function for millions of patients with end-stage arthritis; however, periprosthetic osteolysis following THA has become increasingly recognized as a major clinical problem in both cemented and cementless reconstructions. An aggressive granulomatous tissue (interfacial membrane) consisting predominantly of fibroblasts, aggregates of macrophages, and foreign body giant cells develops at the interface of bone/prostheses or bone/cement. It is believed that particulate wear debris from prosthetic materials and/or bone cement are phagocytized by histiocytic cells of interfacial membrane and then these cells produce inflammatory mediators and proteolytic enzymes to provoke a cascade of osteolytic events. In this paper, we studied in vitro responsiveness of various cell types to particulate wear debris. Although titanium and titanium alloys demonstrate excellent biocompatibility in bulk from, titanium in particulate form can provoke a variety of cellular responses. We have found that small-sized Ti particles of phagocytosable size, a commonly encountered particle species in the periprosthetic tissues of failed THAs, stimulate macrophages to secrete various mediators of bone resorption (prostaglandin E(2), interleukin-1, interleukin-6, and tumor necrosis factor-alpha from macrophages and cause bone resorption in organ culture. In addition, we have shown that phagocytosable titanium particles stimulate fibroblasts to up-regulate the expression of matrix metalloproteinases (stromelysin and collagenase) without a substantial effect on the tissue inhibitor of these enzymes (TIMP). Titanium particulates also have a suppressive effect on procollagen synthesis by osteoblast-like cell line. Thus, titanium particulates have the capacity to stimulate bone resorption and inhibit bone matrix formation. In this series of experiments, we have also shown in vitro inhibitory effect of certain pharmaceutical components (indomethacin, misoprostol) upon bone resorption in organ culture, which may indicate a potential therapeutic intervention to prevent or treat particulate-induced pathological bone resorption in total joint arthroplasties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...