Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 7(7): 935-944, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12242394
2.
Plant Physiol ; 106(4): 1257-1260, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12232405

RESUMO

Threonine dehydratase, the first enzyme in isoleucine biosynthesis, catalyzes deamination and dehydration of threonine to produce 2-ketobutyrate and ammonia. An antimetabolite, 2-(1-cyclohexen-3(R)-yl)-S-glycine (CHG), inhibits the plant enzyme. CHG inhibits the growth of Black Mexican Sweet corn (Zea mays) cells and of Arabidopsis thaliana plants. The herbicidal effects of CHG can be reversed by 2-ketobutyrate, other intermediates of isoleucine biosynthesis, and by isoleucine itself. These results suggest that the herbicidal effects observed with CHG are a consequence of inhibition of threonine dehydratase. The enzyme could be a potential target site for an herbicide screening program.

3.
Plant Physiol ; 103(4): 1221-1226, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12232015

RESUMO

Acetohydroxyacid synthase (AHAS) is the site of action of herbicides of different chemical classes, such as imidazolinones, sulfonylureas, and triazolopyrimidines. Inhibition of AHAS causes the accumulation of 2-ketobutyrate (2-KB) and 2-aminobutyrate (2-AB) (the transamination product of 2-KB), and it has been proposed that the phytotoxicity of these inhibitors is due to this accumulation. Experiments were done to determine the relationship between accumulation of 2-KB and 2-AB and the phytotoxicity of imazaquin to maize (Zea mays). Imazaquin concentrations that inhibit growth of maize plants also cause the accumulation of 2-KB and 2-AB in the shoots. Supplementation of imazaquin-treated plants with isoleucine reduced the pools of 2-KB and 2-AB in the plant but did not protect plants from the growth inhibitory effects of imazaquin. Conversely, feeding 2-AB to maize plants increased 2-KB and 2-AB pools to much higher levels than those observed in imazaquin-treated plants, yet such high pools of 2-KB and 2-AB in the plant had no significant effect on growth. These results conclusively demonstrate that growth inhibition following imazaquin treatment is not due to accumulation of 2-KB and/or 2-AB in plants. Changes in the amino acid profiles after treatment with imazaquin suggest that starvation for the branched-chain amino acids may be the primary cause of growth retardation of maize.

4.
Plant Physiol ; 101(3): 999-1004, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12231753

RESUMO

Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.

5.
Plant Physiol ; 97(4): 1339-41, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16668553

RESUMO

Acetohydroxyacid synthase (AHAS), the first enzyme leading to the biosynthesis of valine, leucine, and isoleucine, is inhibited by different chemical classes of herbicides. There is a loss in the extractable AHAS activity in imidazolinone-treated plants. Immunological studies using a monoclonal antibody against AHAS revealed no degradation of AHAS protein in imidazolinone-treated maize (Zea mays) plants. Therefore, the loss in AHAS activity is not due to the loss of AHAS protein.

6.
Anal Biochem ; 171(1): 173-9, 1988 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-3407914

RESUMO

Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, has received attention recently because of the finding that it is the site of action of several new herbicides. The most commonly used assay for detecting the enzyme is spectrophotometric involving an indirect detection of the product acetolactate. The assay involves the conversion of the end product acetolactate to acetoin and the detection of acetoin via the formation of a creatine and naphthol complex. There is considerable variability in the literature as to the details of this assay. We have investigated a number of factors involved in detecting AHAS in crude ammonium sulfate precipitates using this spectrophotometric method. Substrate and cofactor saturation levels, pH optimum, and temperature optimum have been determined. We have also optimized a number of factors involved in the generation and the detection of acetoin from acetolactate. The results of these experiments can serve as a reference for new investigators in the study of AHAS.


Assuntos
Acetolactato Sintase/análise , Oxo-Ácido-Liases/análise , Acetoína/análise , Concentração de Íons de Hidrogênio , Lactatos/análise , Plantas/análise , Especificidade por Substrato , Temperatura
7.
Plant Physiol ; 83(2): 451-6, 1987 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16665267

RESUMO

Acetohydroxyacid synthase has been purified from maize (Zea mays, var Black Mexican Sweet) suspension culture cells 49-fold by a combination of ion exchange chromatography, gel filtration, and hydroxyapatite chromatography. Use of the nondenaturing, zwitterionic detergent 3-([3-cholamidopropyl]dimethyl-ammonio)-1-propanesulfonate was necessary to dissociate the enzyme from the heterogeneous, high molecular weight aggregates in which it appears to reside in vitro. The solubilized maize acetohydroxyacid synthase had a relative molecular mass of 440,000. The purified enzyme was highly unstable. Acetohydroxyacid synthase activities in crude extracts of excised maize leaves and suspension cultured cells were reduced 85 and 58%, respectively, by incubation of the tissue with 100 micromolar (excised leaves) and 5 micromolar (suspension cultures) of the imidazolinone imazapyr prior to enzyme extraction, suggesting that the inhibitor binds tightly to the enzyme in vivo. Binding of imazapyr to maize acetohydroxyacid synthase could also be demonstrated in vitro. Evidence is presented which suggests that the interaction between imazapyr and the enzyme is reversible. Imazapyr also exhibited slow-binding properties when incubated with maize cell acetohydroxyacid synthase in extended time course experiments. Initial and final K(i) values for the inhibition were 15 and 0.9 micromolar, respectively. The results suggest that imazapyr is a slow, tight-binding inhibitor of acetohydroxyacid synthase.

8.
Plant Physiol ; 76(2): 545-6, 1984 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16663878

RESUMO

The imidazolinones, a new chemical class of herbicides, were shown to be uncompetitive inhibitors of acetohydroxyacid synthase from corn. This is the first common enzyme in the biosynthetic pathway for valine, leucine, and isoleucine. The K(i) for the imidazolinones tested ranged from 2 to 12 micromolar. These results may explain the mechanism of action of these new herbicides.

9.
Plant Physiol ; 58(4): 499-504, 1976 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16659704

RESUMO

The roles that leaf nitrate content and nitrate flux play in regulating the levels of nitrate reductase activity (NRA) were investigated in 8- to 14-day old maize (Zea mays L.) plants containing high nitrate levels while other environmental and endogenous factors were constant. The nitrate flux of intact plants was measured from the product of the transpiration rate and the concentration of nitrate in the xylem. NRA decreased when the seedlings were deprived of nitrate. The nitrate flux and the leaf nitrate content also decreased. When nitrate was resupplied to the roots, all three parameters increased.Attempts to alter the nitrate flux by varying transpiration rates were unsuccessful due to a relatively constant rate of delivery of nitrate to the xylem as transpiration rates fell. However, cooling the roots resulted in a decrease in the nitrate flux. Plants with a lower nitrate flux rapidly lost NRA, although the leaf nitrate content was initially unaffected. If the roots remained cool for a long enough time, the leaf nitrate content eventually decreased. Rewarming the roots increased the nitrate flux, leaf nitrate content, and NRA to control levels. When the nitrate flux in excised shoots was varied in three separate ways, decreasing the nitrate flux to the leaves resulted in a rapid decrease in NRA, although leaf nitrate contents were unchanged.These experiments show that the nitrate flux to the leaves from the roots plays a much larger regulatory role than the leaf nitrate content in controlling the level of NRA in intact plants.

10.
Plant Physiol ; 58(4): 505-9, 1976 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16659705

RESUMO

Experiments were conducted to determine whether the nitrate flux to the leaves or the nitrate content of the leaves regulated the nitrate reductase activity (NRA) in leaves of intact maize (Zea mays L.) seedlings having low water potentials (psi(w)) when other environmental and endogenous factors were constant. In seedlings that were desiccated slowly, the nitrate flux, leaf nitrate content, and NRA decreased as psi(w) decreased. The decrease in nitrate flux was caused by a decrease in both the rate of transpiration and the rate of nitrate delivery to the transpiration stream. Upon rewatering, the recovery in NRA was correlated with the nitrate flux but not the leaf nitrate content.Recovery depended on protein synthesis, since recovery could be prevented in excised leaves if an inhibitor of protein synthesis was present. However, it also depended on a high nitrate flux, since recovery could be prevented if there was no nitrate flux, despite a relatively high, constant leaf nitrate content, a high psi(w), and the absence of an inhibitor of protein synthesis.The synthesis of NRA could be increased at low psi(w) if seedlings were desiccated in the presence of additional nitrate, which increased the nitrate flux to the leaves. Since the decrease in NRA at low psi(w) could be relieved by increasing the nitrate flux and recovery also depended on nitrate flux, the inhibition of NRA at low psi(3) was not controlled by a direct effect of psi(w) on protein synthesis nor by alterations in the leaf nitrate content, but rather by a decrease in the nitrate flux that in turn regulated the synthesis of the enzyme.

11.
Planta ; 122(1): 79-90, 1975 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24435924

RESUMO

An inhibition of root growth, a decrease in the amount of potassium (as (86)Rb) and phosphate ((32)P) accumulation by the root, and a partial depolarization of transmembrane electropotential were observed to develop with a similar time course and to a similar extent when intact maize (Zea mays L.) roots were treated with 10(-5) M abscisic acid (ABA). Potassium uptake was inhibited by ABA when excised, low-salt roots were bathed in KCl, KH2PO4, or K2SO4. ABA did not affect the ATP content of the tissues, the activity of isolated mitochondria, nor the activity of microsomal K(+)-stimulated ATPases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...