Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 12012, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377305

RESUMO

Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.

2.
J Phys Chem Lett ; 6(4): 592-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262472

RESUMO

Semiconductors with small band gaps (<2 eV) must be stabilized against corrosion or passivation in aqueous electrolytes before such materials can be used as photoelectrodes to directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO2 to fuels. We report herein the stabilization of np(+)-Si(100) and n-Si(111) photoanodes for over 1200 h of continuous light-driven evolution of O2(g) in 1.0 M KOH(aq) by an earth-abundant, optically transparent, electrocatalytic, stable, conducting nickel oxide layer. Under simulated solar illumination and with optimized index-matching for proper antireflection, NiOx-coated np(+)-Si(100) photoanodes produced photocurrent-onset potentials of -180 ± 20 mV referenced to the equilibrium potential for evolution of O2(g), photocurrent densities of 29 ± 1.8 mA cm(-2) at the equilibrium potential for evolution of O2(g), and a solar-to-O2(g) conversion figure-of-merit of 2.1%.

3.
Science ; 344(6187): 1005-9, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24876492

RESUMO

Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected semiconductors. In conjunction with a thin layer or islands of Ni oxide electrocatalysts, Si photoanodes exhibited continuous oxidation of 1.0 molar aqueous KOH to O2 for more than 100 hours at photocurrent densities of >30 milliamperes per square centimeter and ~100% Faradaic efficiency. TiO2-coated GaAs and GaP photoelectrodes exhibited photovoltages of 0.81 and 0.59 V and light-limiting photocurrent densities of 14.3 and 3.4 milliamperes per square centimeter, respectively, for water oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...