Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 46(9-10): 782-794, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770811

RESUMO

Artemongolins A-K (1-11), which are undescribed sesquiterpenoid dimers, were obtained from Artemisia mongolica and characterized through comprehensive spectral data, including HRESIMS, IR, 1D and 2D NMR, and ECD calculations. The absolute configurations of compounds 1, 4, and 7 were undoubtedly determined by a single-crystal X-ray crystallography. Artemongolins A-K (1-11) featured a rare 5/7/5/5/5/10 hexacyclic system composed of a germacrene and a guaianolide by a fused 2-oxaspiro[4,4]nonane-1-one ring system. Antihepatoma evaluation against three human hepatoma cell lines demonstrated that the most active compounds 5 and 6 displayed inhibitory activity with IC50 values of 88.6 and 57.0 (HepG2), 59.1 and 26.4 (Huh7), and 67.5 and 32.5 (SK-Hep-1) µM, respectively.


Assuntos
Artemisia , Sesquiterpenos , Humanos , Artemisia/química , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
2.
Org Biomol Chem ; 21(4): 823-831, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36601986

RESUMO

Artemongolides A-E (1-5), an unusual class of diseco-guaianolides featuring a rare fused 7-methylbicyclo[2.2.1]-2-ene-7-heptanol ring system, and artemongolide F (6), the first example of [4 + 2] Diels-Alder type adducts presumably incorporating a chain farnesane sesquiterpene and a guaianolide diene, were isolated from the whole plant of Artemisia mongolica. Their structures were elucidated based on the spectroscopic analyses of UV, IR, MS, and 1D and 2D NMR spectra. The absolute configurations of artemongolides A (1) and F (6) were determined by single-crystal X-ray crystallography, and those of artemongolides B-E (2-5) were established by ECD calculations. Cytotoxicity evaluation suggested that compound 1 exhibited activity against HSC-LX2 cells with an IC50 value of 165.0 µM, equivalent to that of the positive control silybin (IC50, 146.4 µM). Preliminary mechanism studies revealed that compound 1 could inhibit the deposition of human collagen type I (Col I), human hyaluronic acid (HA), and human laminin (HL) with IC50 values of 123.8, 160.4, and 139.20 µM.


Assuntos
Artemisia , Sesquiterpenos , Humanos , Artemisia/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
3.
J Healthc Eng ; 2022: 4247023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368959

RESUMO

The quality of positron emission tomography (PET) imaging is positively correlated with scanner sensitivity, which is closely related to the axial field of view (FOV). Conventional short-axis PET scanners (200-350 mm FOV) reduce the imaging quality during fast scanning (2-3 minutes) due to the limitation of FOV, which reduce the reliability of diagnosis. To overcome hardware limitations and improve the image quality of short-axis PET scanners, we propose a supervised deep learning model, CycleAGAN, which is based on a cycle-consistent adversarial network (CycleGAN). We introduced the attention mechanism into the generator and focus on channel and spatial representative features and supervised learning using pairs of data to maintain the spatial consistency of the generated images with the ground truth. The imaging information of 386 patients from Henan Provincial People's Hospital was prospectively included as the dataset in this study. The training data come from the total-body PET scanner uEXPLORER. The proposed CycleAGAN is compared with traditional gray-level-based methods and learning-based methods. The results confirm that CycleAGAN achieved the best results on SSIM and NRMSE and achieved the closest distribution to ground truth in expert rating. The proposed method is not only able to improve the image quality of PET scanners with 320 mm FOV but also achieved good results on shorter FOV scanners. Patients and radiologists can benefit from the computer-aided diagnosis (CAD) system integrated with CycleAGAN.


Assuntos
Processamento de Imagem Assistida por Computador , Melhoria de Qualidade , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes
6.
J Craniofac Surg ; 28(6): 1615-1619, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863113

RESUMO

The authors aim to track the distribution of human umbilical cord mesenchymal stem cells (MSCs) in large blood vessel of traumatic brain injury -rats through immunohistochemical method and small animal imaging system. After green fluorescent protein (GFP) gene was transfected into 293T cell, virus was packaged and MSCs were transfected. Mesenchymal stem cells containing GFP were transplanted into brain ventricle of rats when the infection rate reaches 95%. The immunohistochemical and small animal imaging system was used to detect the distribution of MSCs in large blood vessels of rats. Mesenchymal stem cells could be observed in large vessels with positive GFP expression 10 days after transplantation, while control groups (normal group and traumatic brain injury group) have negative GFP expression. The vascular endothelial growth factor in transplantation group was higher than that in control groups. The in vivo imaging showed obvious distribution of MSCs in the blood vessels of rats, while no MSCs could be seen in control groups. The intravascular migration and homing of MSCs could be seen in rats received MSCs transplantation, and new angiogenesis could be seen in MSCs-transplanted blood vessels.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical/citologia , Animais , Vasos Sanguíneos/química , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Projetos de Pesquisa
7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 30(3): 230-2, 236, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25244788

RESUMO

OBJECTIVE: To investigate the protective effect and mechanism of Xingnaojing(Traditional Chinese Medicine) injection on brain injury in rats. METHODS: Sixty-three healthy adult male SD rats were randomly divided into 3 groups (n = 21): sham operation group, model group, xingnaojing group. The model of traumatic brain injury model group and Xingnaojing group used the free fall impact injury method, the sham operation group underwent craniotomy, did not cause brain damage. Xingnaojing group in rats after 10 min by tail vein injection Xingnaojing injection 10 ml/(kg x d), model group and sham operation group were intravenously injected with 0.9% sodium chloride solution, three groups were administered continuously for 7 days. At administration of the seventh days compared the S-100B protein in the serum and neuro specific enolase (NSE) level, the water content of brain tissue, serum superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) content, and neurological function of rats among groups. RESULTS: Compared with the sham operation group, the nerve defect, brain water content, MDA, S100B protein and NSE levels were obvigusly increased in Xingnaojing group and model group; SOD, GSH-Px content decreased significantly; In Xingnaojing group nerve impairment and brain moisture were significantly lower than those of model group, the serum MDA, S-100B protein and NSE levels were significantly lower than those in the model group, the SOD, GSH-Px activity was significantly higher than that in the model group. CONCLUSION: Xingnaojing injection has protective effects on rat brain injury, and its mechanism may be related to reduce brain edema after traumatic brain injury and inhibit the reaction of oxygen free radical, protect nerve cells.


Assuntos
Lesões Encefálicas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Animais , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Proteínas S100/metabolismo , Superóxido Dismutase/metabolismo
8.
Neurol Sci ; 35(9): 1387-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24651933

RESUMO

Inflammatory reactions play a key role in the cerebral injury after stroke or other ischemic brain diseases. Curcumin, which is extracted from herb turmeric, has been reported to have anti-inflammatory effects. The present study was aimed to investigate the anti-inflammatory effects of curcumin on oxygen-glucose deprivation (OGD) injured brain microvascular endothelial cells (BMECs). Rat BMECs were used and the results showed that OGD induced a significant elevation of the leakage of lactate dehydrogenase and the secretion of the proinflammation cytokine, IL-1ß. Activation of p38, JNK MAPKs, and NF-κB in BMECs was also observed after OGD. The treatment of curcumin (20 µM) inhibited the increased production of IL-1ß both at the protein and mRNA levels. The increased phosphorylation of p38 and JNK induced by OGD was decreased under the treatment of curcumin, whereas the p38 inhibitor, SB203580, significantly inhibited OGD-induced IL-1ß production, but the JNK inhibitor, SP600125, failed to do so. These results suggest that the inhibition of IL-1ß by curcumin may dependent on the p38 signaling pathway. The OGD-induced IL-1ß production was also inhibited by the NF-κB inhibitor, and curcumin suppressed OGD-induced NF-κB activation. Furthermore, the NF-κB activation was attenuated by the SB203580, indicating that NF-κB activation was dependent on p38 signaling pathway. The present study suggests that curcumin displays an anti-inflammatory effect on OGD-injured BMECs via down-regulating of MAPK and NF-κB signaling pathways and might have therapeutic potential for the ischemic brain diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Microvasos/citologia , Animais , Encéfalo/anatomia & histologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glucose/deficiência , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Chin J Traumatol ; 12(5): 263-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19788842

RESUMO

OBJECTIVE: To explore the role and function of stromal cell-derived factor-1 (SDF-1) in stem cells migrating into injured brain area. METHODS: Rat-derived nerve stem cells (NSCs) were isolated and cultured routinely. Transwell system was used to observe the migration ability of NSCs into injured nerve cells. Immunocytochemistry was used to explore the expression of chemotactic factor receptor-4 (CXCR-4) in NSCs. In vivo, we applied immunofluorescence technique to observe the migration of NSCs into injured brain area. Immunofluorescence technique and Western blotting were used to test expression level of SDF-1. After AMD3100 (a special chemical blocker) blocking CXCR-4, the migration ability of NSCs was tested in vivo and in vitro, respectively. RESULTS: NSCs displayed specific tropism for injured nerve cells or traumatic brain area in vivo and in vitro. The expression level of SDF-1 in traumatic brain area increased remarkably and the expression level of CXCR-4 in the NSCs increased simultaneously. After AMD3100 blocking the expression of CXCR-4, the migration ability of NSCs decreased significantly both in vivo and in vitro. CONCLUSIONS: SDF-1 may play a key role in stem cells migrating into injured brain area through specially combining with CXCR-4.


Assuntos
Lesões Encefálicas/patologia , Quimiocina CXCL12/fisiologia , Neurônios/citologia , Células-Tronco/fisiologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/análise , Ratos , Receptores CXCR4/análise , Receptores CXCR4/fisiologia , Tropismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...