Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 242: 120261, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399691

RESUMO

Aggregation of graphene oxide (GO) is significantly affected by dissolved organic matter (DOM) in natural waters, while DOM's climate zone and light irradiation is seldom considered. This study investigated the effect of humic/fulvic acid (HA/FA) from various climate zones of China on aggregation of small (200 nm) and large (500 nm) GO under 120-h UV irradiation. GO aggregation was promoted by HA/FA because UV irradiation decreased hydrophilicity of GO and steric forces among particles. GO generated electron and hole pair under UV irradiation, which reduce GO with more hydrophilic oxygen-containing functional group (C-O) to rGO with high hydrophobicity and oxidize DOM into organic matter with smaller molecular weight. Most severe GO aggregation was observed with Makou HA from Subtropical Monsoon climate zone and Maqin FA from Plateau and Mountain climate zone, which was primarily because HA/FA's high molecular weight and aromaticity dispersed GO initially that facilitated UV penetration. GO aggregation ratio was positively correlated with graphitic fraction content (R2 = 0.82-0.99) and negatively correlated with C-O group content (R2 = 0.61-0.98) in the presence of DOM under UV irradiation. This work highlights different dispersity of GO during photochemical reactions in various climate zones, providing new insight into the environmental implications of nanomaterial release.


Assuntos
Grafite , Raios Ultravioleta , Substâncias Húmicas/análise
2.
Water Res ; 216: 118320, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339969

RESUMO

Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (1O2), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH2)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, CC scission and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde or ketone via H abstraction and CC scission. Moreover, 1O2 might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.


Assuntos
Envelhecimento da Pele , Poluentes Químicos da Água , Cetonas , Microplásticos , Plásticos , Polímeros , Poliestirenos , Espécies Reativas de Oxigênio , Água , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 279: 116926, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33751945

RESUMO

Suspended sediment (SS) is ubiquitous in natural waters and plays a key role in the fate of engineered nanomaterials. In this study, the effect of SS on the aggregation, settling, and dissolution of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) was investigated under environmentally relevant conditions. The heteroaggregation of AgNPs with SS was not observed at low ionic strength (≤0.01 M) due to high electrostatic repulsion and steric forces. At higher NaCl concentrations (0.1 and 0.3 M), PVP-AgNPs were found to attach onto the SS surface, and the formation of AgNP-SS heteroaggregates strongly promoted settling of PVP-AgNPs due to the overwhelming gravity force. PVP-AgNP dissolution was reduced after the addition of sediment to ultrapure water because the presence of sediment-associated dissolved organic matter (SS-DOM). The formation of an AgCl layer on PVP-AgNP surface in 0.01 M NaCl solution resulted in the minor effect of SS on AgNP dissolution. After addition of SS, the dissolved silver concentrations of PVP-AgNP increased in 0.1 and 0.3 M NaCl solution. The interactions of SS-DOM with AgNPs under different NaCl concentrations interfered the dissolution of AgNPs in sediment-laden water. This study provides new insight into the fate of AgNPs in sediment-laden water under various environmental conditions.


Assuntos
Nanopartículas Metálicas , Prata , Sedimentos Geológicos , Concentração Osmolar , Solubilidade
4.
Water Environ Res ; 92(6): 840-849, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31730245

RESUMO

This paper investigated the effect mechanism of complex components (fulvic acid [FA], sodium dodecylbenzene sulfonate [SDBS], and sodium nitrate [NaNO3 ]) on the aggregation kinetics of polyvinylpyrrolidone-modified silver nanoparticles (PVP-AgNPs) under UV irradiation. The results showed that FA and NaNO3 alone did not cause aggregation due to the high steric hindrance and/or electrostatic repulsive forces. In high concentration of SDBS solution (20-50 mM), the stability of PVP-AgNPs was reduced by adsorbing SDBS on nanoparticle surface and replacing their PVP coatings. A mixed system of two pollutants had a synergistic effect on PVP-AgNPs aggregation. In the mixed system of SDBS and FA, the interaction of SDBS and PVP-AgNPs dominated the aggregation of PVP-AgNPs. NaNO3 significantly improved the aggregation rate of PVP-AgNPs in SDBS solution due to the charge neutralization effect of electrolyte. In 20 mg/L FA solution, the aggregation rate increased slightly with increasing NaNO3 concentration from 50 to 200 mM due to the charge neutralization effect, while the hydrodynamic diameters of PVP-AgNPs increased linearly and rapidly to micrometer size because the spatial conformation of adsorbed FA became compact in high-salinity solution. The calculation results of eDLVO theory were basically consistent with most of the experimental results. PRACTITIONER POINTS: PVP-AgNPs was uniformly dispersed in NaNO3 or FA solution under UV irradiation. PVP-AgNPs formed aggregates in SDBS solutions under UV irradiation. A system with two mixed pollutants had a synergistic effect on promoting aggregation of PVP-AgNPs. eDLVO theory could explain the aggregation results in different chemical conditions except in NaNO3 solution.


Assuntos
Nanopartículas Metálicas , Prata , Cinética , Povidona , Raios Ultravioleta
5.
Water Res ; 161: 251-261, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202112

RESUMO

While the visible-light-driven photocatalytic disinfection techniques for drinking water have recently attracted tremendous attentions, it is necessary to further improve the solar energy utilization efficiency. In this study, we synthesized Pb-BiFeO3 photocatalysts doped with different amounts of reduced graphene oxide (Pb-BiFeO3/rGO). The photocatalytic disinfection efficiencies toward gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) were evaluated under visible-light irradiation (λ ≥ 400 nm). The results indicated that Pb-BiFeO3 with 0.5 wt% rGO (Pb-BiFeO3/0.5% rGO) exhibited the highest disinfection efficiency. Complete inactivation was reached within 30 min and 90 min for E. coli and S. aureus, respectively. The transcriptomic analysis results indicated that Pb-BiFeO3/0.5% rGO deregulates the genes in E. coli cells that are involved in the cell membrane damage and oxidative stress responses. This was validated by the cell leakage of nucleic acids or proteins, transmission electron microscopy images of the bacteria, and the disinfection efficiency decrease caused by the introduction of scavenger of hydroxyl radical (HO•). Metal ions (Pb2+, Bi2+, and Fe3+) released from the photocatalysts did not contribute to the disinfection process. For the first time, our results elucidated that the photocatalytic disinfection mechanism of Pb-BiFeO3/rGO toward E. coli was mainly associated with oxidative stress due to HO• generation and the loss of membrane integrity from direct contact with the photocatalyst. After four consecutive cycles, the Pb-BiFeO3/0.5% rGO photocatalyst exhibited a strong antibacterial efficiency. The excellent disinfection efficiency and stability of Pb-BiFeO3/0.5% rGO suggests that this photocatalyst shows great potential for drinking water disinfection.


Assuntos
Desinfecção , Chumbo , Catálise , Escherichia coli , Luz , Staphylococcus aureus
6.
Chemosphere ; 211: 34-43, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071434

RESUMO

Degradation of perfluorooctanoic acid (PFOA) is important because of its global distribution, persistence and toxicity to organisms. In this work, the PbBiFeO3 photocatalyst was prepared by the hydrothermal method. The effect of doping amount of reduced graphene oxide (rGO) on the decomposition of PFOA was investigated under 254 nm UV light. The results indicated that 100 mg L-1 PbBiFeO3 with 0.5 wt% rGO exhibited the highest degradation efficiency for 50 mg L-1 PFOA at pH = 2.0 from aqueous solution. The removal rate of PFOA reached 69.6% after 8 h UV irradiation under the optimal conditions (PFOA concentration of 50 mg L-1, Pb BiFeO3/0.5% rGO concentration of 100 mg L-1, and pH of 2.0). The total organic carbon removal rate and defluorination rate were 28.0% and 37.6%, respectively. During the degradation process, four major intermediates with shorter chain length than PFOA (∼C4C7) were identified. The mechanism responsible for PFOA decomposition was supposed that OH attacked PFOA to form perfluoroalkyl alcohol and then was transferred to perfluoroalkyl fluoride which can easily undergo hydrolysis to form shorter-chain perfluorocarboxylic acids than PFOA. This indicated that the photocatalytic degradation of PFOA was an oxidation process through stepwise losing of CF2 group.


Assuntos
Caprilatos/química , Fluoretos/química , Fluorocarbonos/química , Chumbo/química , Fotólise , Catálise , Cinética , Oxirredução
7.
Environ Sci Technol ; 52(8): 4842-4849, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260863

RESUMO

This work investigates the effect of chloride ion (Cl-) on dissolution, reactive oxygen species (ROS) generation, and toxicity of citrate-coated silver nanoparticles (AgNPs) under UV irradiation. The dissolution rate was decreased by 0.01 M Cl- due to AgCl passivation on the AgNP surface. By contrast, high concentrations of Cl- (0.1 or 0.5 M) promoted dissolution due to the formation of soluble Ag-Cl complexes (AgCl x1- x). The generation of O2•- in the AgNPs/Cl-/UV system was promoted by 0.01 M Cl-, whereas it was retarded by 0.1 or 0.5 M Cl-, which was probably because the aggregation of AgNPs at high ionic strength reduced the nanoparticles' surface areas for radical formation. Additionally, Cl- contributed to •OH generation in the AgNPs/Cl-/UV system, in which the produced •OH concentrations increased with increasing Cl- concentrations. The reduction reaction between silver ions and O2•- resulted in lower dissolution rates of AgNPs/Cl- mixtures under UV irradiation than those in the dark. The phototoxicity of AgNPs toward E. coli with different concentrations of Cl- followed the order of 0.5 M > 0 M > 0.1 M > 0.01 M. Both ROS and dissolved Ag played significant role in the phototoxicity of AgNPs. This work demonstrates the potential importance of anions in the fate and biological impact of AgNPs.


Assuntos
Nanopartículas Metálicas , Prata , Escherichia coli , Íons , Espécies Reativas de Oxigênio , Solubilidade
8.
Water Res ; 124: 595-604, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28820990

RESUMO

In this study, the effect of natural organic matter (NOM) composition (humic acid (HA) or fulvic acid (FA)) on dissolution, reactive oxygen species (ROS) generation, and toxicity of sulfide nanoparticles (NPs) was investigated under UV irradiation. NOM acted as a UV filter or antioxidant, decreasing ROS (O2-, OH, and 1O2) generation by WS2 and MoS2 NPs. The higher light-absorbing fractions of HA in NP/HA mixtures and the faster reaction rate of HA with ROS resulted in higher inhibition effect of HA than FA on O2- and OH generation by WS2 and MoS2 NPs. Both HA and FA completely inhibited 1O2 generation by WS2 and MoS2 NPs. NOM could transfer electrons to CdS and promote its O2- generation. No measurable amount of OH was generated by CdS with or without NOM. FA decreased 1O2 generation by CdS more significantly than HA due to the higher reaction rate between FA and 1O2. HA showed a higher inhibition effect on the dissolution rate of CdS and WS2 NPs than FA. Both HA and FA played minor roles in the toxicity of CdS toward Escherichia coli but decreased the toxicity of MoS2 and WS2 due to the reduced ROS generation and/or dissolution concentrations.


Assuntos
Benzopiranos , Nanopartículas , Espécies Reativas de Oxigênio , Sulfetos , Substâncias Húmicas , Solubilidade
9.
Environ Pollut ; 224: 606-614, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258860

RESUMO

In this study, the phototoxicity of cadmium sulfide (CdS), molybdenum disulfide (MoS2), and tungsten disulfide (WS2) nanoparticles (NPs) toward Escherichia coli (E. coli) under UV irradiation (365 nm) was investigated. At the same mass concentration of NPs, the toxicity of three NPs decreased in the order of CdS > MoS2 > WS2. For example, the death rates of E. coli exposed to 50 mg/L CdS, MoS2, and WS2 were 96.7%, 38.5%, and 31.2%, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to three NPs showed the damage of cell walls and release of intracellular components. The CdS-treated cell wall was more extensively damaged than those of MoS2-treated and WS2-treated bacteria. WS2 and MoS2 generated superoxide radical (O2-), singlet oxygen (1O2), and hydroxyl radical under UV irradiation, CdS produced only O2- and 1O2. CdS and WS2 released ions under UV irradiation, while MoS2 did not. Reactive oxygen species (ROS) generation and toxic ion release jointly resulted in the antibacterial activities of CdS and WS2. ROS generation was the dominant toxic mechanism of MoS2 toward the bacteria. This study highlighted the importance of considering the hazardous effect of sulfide NPs after their release into natural waters under light irradiation condition.


Assuntos
Cádmio/toxicidade , Escherichia coli/efeitos dos fármacos , Molibdênio/toxicidade , Nanopartículas/toxicidade , Sulfetos/toxicidade , Tungstênio/toxicidade , Raios Ultravioleta , Dermatite Fototóxica , Luz
10.
Water Res ; 98: 9-18, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27064207

RESUMO

The effect of humic acid (HA) or fulvic acid (FA) on reactive oxygen species (ROS) generation by six metal-oxide nanoparticles (NPs) and their toxicities toward Escherichia coli was investigated under UV irradiation. Dissolved organic matter (DOM) decreased OH generation by TiO2, ZnO, and Fe2O3, with FA inhibiting OH generation more than HA. The generated OH in NPs/DOM mixtures was higher than the measured concentrations because DOM consumes OH faster than its molecular probe. None of NPs/FA mixtures produced O2(-). The generated O2(-) concentrations in NPs/HA mixtures (except Fe2O3/HA) were higher than the sum of O2(-) concentrations that produced as NPs and HA were presented by themselves. Synergistic O2(-) generation in NPs/HA mixtures resulted from O2 reduction by electron transferred from photoionized HA to NPs. DOM increased (1)O2 generation by TiO2, CuO, CeO2, and SiO2, and FA promoted (1)O2 generation more than HA. Enhanced (1)O2 generation resulted from DOM sensitization of NPs. HA did not increase (1)O2 generation by ZnO and Fe2O3 primarily because released ions quenched (1)O2 precursor ((3)HA*). Linear correlation was developed between total ROS concentrations generated by NPs/DOM mixtures and bacterial survival rates (R(2) ≥ 0.80). The results implied the necessity of considering DOM when investigating the photoreactivity of NPs.


Assuntos
Compostos Férricos , Espécies Reativas de Oxigênio , Substâncias Húmicas , Metais , Óxidos , Dióxido de Silício
11.
Chemosphere ; 146: 526-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26745381

RESUMO

Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design).


Assuntos
Técnicas Eletroquímicas/métodos , Fluorocarbonos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Boro/química , Diamante/química , Eletrodos , Chumbo/química , Oxirredução , Óxidos/química , Compostos de Estanho/química
12.
Ecotoxicol Environ Saf ; 122: 238-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26283288

RESUMO

Quantitative comparison of different aqueous media on the phototoxicity of copper oxide nanoparticles (CuO NPs) is crucial for understanding their ecological effects. In this study, the phototoxicity of CuO NPs toward the green fluorescent protein-expressing Escherichia coli (GFP-E. coli) under UV irradiation (365 nm) was investigated in Luria-Bertani medium (LB), NaCl solution, deionized water (DI) and phosphate-buffered saline (PBS). The phototoxicity of CuO NPs toward GFP-E. coli decreased in the order of DI>NaCl>PBS>LB because of different released concentrations of Cu(2+). The 3h released Cu(2+) concentrations by 10mg/L CuO NPs in DI water, NaCl solution, LB medium, and PBS were 1946.3 ± 75.6, 1242.5 ± 47.6, 1023.4 ± 41.2, and 1162.1 ± 41.9 µg/L, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to CuO NPs demonstrated that the released Cu(2+) resulted in fragmentation of bacterial cell walls, leakage of intracellular components, and finally death of bacteria in four media after UV light irradiation. In each medium, the bacterial mortality rate logarithmically increased with the releasing concentrations of Cu(2+) by CuO NPs (R(2)>0.90) exposed to 3h UV light. This study highlights the importance of taking into consideration of water chemistry when the phototoxicity of CuO NPs is assessed in nanotoxicity research.


Assuntos
Cobre/toxicidade , Meios de Cultura/química , Escherichia coli/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Nanopartículas Metálicas/toxicidade , Raios Ultravioleta , Soluções Tampão , Cobre/efeitos da radiação , Escherichia coli/genética , Escherichia coli/ultraestrutura , Nanopartículas Metálicas/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fotólise , Cloreto de Sódio/química , Soluções , Propriedades de Superfície , Água/química
13.
Environ Sci Technol ; 49(2): 965-73, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25536151

RESUMO

We investigated the photogeneration of reactive oxygen species (ROS) by C60 under UV irradiation, when humic acid (HA) or fulvic acid (FA) is present. When C60 and dissolved organic matter (DOM) were present as a mixture, singlet oxygen ((1)O2) generation concentrations were 1.2­1.5 times higher than the sum of (1)O2 concentrations that were produced when C60 and DOM were present in water by themselves. When C60 and HA were present as a mixture, superoxide radicals (O2(•­)) were 2.2­2.6 times more than when C60 and HA were present in water by themselves. A synergistic ROS photogeneration mechanism involved in energy and electron transfer between DOM and C60 was proposed. Enhanced (1)O2 generation in the mixtures was partly due to (3)DOM* energy transfer to O2. However, it was mostly due to (3)DOM* energy transfer to C60 producing (3)C60*. (3)C60* has a prolonged lifetime (>4 µs) in the mixture and provides sufficient time for energy transfer to O2, which produces (1)O2. The enhanced O2(•­) generation for HA/C60 mixture was because (3)C60* mediated electron transfer from photoionized HA to O2. This study demonstrates the importance of considering DOM when investigating ROS production by C60.


Assuntos
Fulerenos/química , Substâncias Húmicas/efeitos da radiação , Espécies Reativas de Oxigênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Transferência de Energia , Fulerenos/efeitos da radiação , Cinética , Fotólise , Solubilidade , Poluentes Químicos da Água/efeitos da radiação
14.
Environ Sci Technol ; 48(9): 4946-53, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24673243

RESUMO

The impact of perfluorocarboxylic acids (PFCAs) with carbon chain length C2 to C8 on the dissolution, aggregation, reactive oxygen species (ROS) generation, and toxicity of citrate-coated AgNPs was investigated under UV irradiation. The presence of PFCAs decreased dissolution, aggregation, ROS generation, and toxicity of AgNPs because the negatively charged PFCAs sorbed on AgNP surface enhanced their stability. Both dissolution and aggregation rate of AgNPs decreased with chain length of PFCAs under UV irradiation, primarily because PFCAs with longer chain length sorbed on AgNP surface could form thicker coatings. The dissolution of AgNPs followed pseudo-first-order kinetics, and the rate constant decreased from 0.58 h(-1) with C2 to 0.30 h(-1) with C8. The hydrodynamic diameters of AgNPs linearly increased under UV irradiation with aggregation rates ranged from 72.1 to 143.5 nm/h. O2(•-) generation was observed in AgNP suspension with quantum yield of 0.12%, but was completely suppressed by PFCAs because they inhibited the interaction between photoelectrons and O2. A linear correlation was established between dissolved Ag(+) and bacterial survival rates of AgNPs with and without PFCAs under UV irradiation. This study highlights the necessity of considering coexisting organic contaminants when investigating the environmental behaviors of AgNPs.


Assuntos
Ácidos Carboxílicos/química , Fluorocarbonos/química , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Raios Ultravioleta , Bactérias/efeitos dos fármacos , Ácido Cítrico/química , Cinética , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Modelos Químicos , Oxirredução , Processos Fotoquímicos , Espécies Reativas de Oxigênio/química , Prata/química
15.
Langmuir ; 30(10): 2852-62, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24568235

RESUMO

The aqueous media could affect the physicochemical properties (e.g., surface charge, morphology, and aggregation) of ZnO nanoparticles (nZnO), leading to their different environmental impacts. In this study, the toxicity of nZnO toward the green fluorescent protein-expressing Escherichia coli cells under UV-365 light irradiaiton in various media was assessed, including deionized (DI) water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis medium (MD), and Luria-Bertani medium (LB). The toxicity of nZnO was assessed by the conventional plate count method and the fluorescence intensity method, which consistently demonstrated that the nZnO toxicity was dependent on the medium components that varied the potency of reactive oxygen species (ROS) generation. In DI, NaCl, PBS, and MD medium, nZnO generated three types of ROS (O2(•-), •OH, and (1)O2), whereas in LB medium, nZnO generated O2(•-) and (1)O2. The total concentrations of ROS generated by nZnO in DI, NaCl, PBS, MD, and LB were 265.5 ± 15.9, 153.6 ± 8.6, 144.3 ± 6.9, 123.0 ± 6.0, and 115.6 ± 4.5 µM, respectively. Furthermore, a linear correlation was established between the total concentrations of three types of ROS generated by nZnO and their bacterial mortality rate (R(2) = 0.92) in various media. Since the released Zn(2+) from nZnO under UV irradiation only accounted for less than 10% of the total Zn in all media, the ionic forms of zinc did not significantly contribute to the overall toxicity. This work aims at providing further insight into the medium type influences on the ROS production and the toxicity of nZnO toward the E. coli cells.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Óxido de Zinco/química , Escherichia coli/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...