Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1095: 93-98, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31864634

RESUMO

The Ni foam decorated with ZnO/BiOI core-shell p-n junction nanorods was prepared and employed as an enzyme loading matrix to detect glucose. The detection potential was decreased significantly (0.3 V) and the sensitivity was enhanced largely (115.2 µA mM-1 cm-2). The metal-semiconductor foam can afford the porous surface for loading enzymes and achieving the multiple catalysis. More important, the built-in electric field and electron well in the p-n junction interface provide the driving force for electron transport. It was an effective strategy to enhance the biosensing performance by the rational design of p-n junction.

2.
Anal Chim Acta ; 1079: 79-85, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31387722

RESUMO

We proposed a new method for regulating the electrochemical signal by using Schottky barrier. The results show that the height of Schottky barrier can be altered by adsorbing charged substance to control the enhancement and attenuation of electrochemical signal. The Schottky interface formed by MoS2 and CQDs (carbon quantum dots) can achieve the selective detection of dopamine and overcome the distraction of ascorbic acid and uric acid with similar redox signal. The combination of Schottky barrier and electrochemical detection enhance the sensitivity and selectivity of electrochemical sensor significantly. It is a new strategy for improving electrochemical detection by introducing Schottky barrier into electrochemical process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...