Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555582

RESUMO

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Assuntos
Oryza , Domesticação , Genes de Plantas , Sementes , Grão Comestível/genética
2.
Commun Biol ; 5(1): 36, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017643

RESUMO

Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Sementes/genética , China , Oryza/genética , Filogenia , Poaceae/metabolismo
3.
J Integr Plant Biol ; 62(3): 314-329, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30791211

RESUMO

Rice is a major source of cadmium (Cd) intake for Asian people. Indica rice usually accumulates more Cd in shoots and grains than Japonica rice. However, underlying genetic bases for differential Cd accumulation between Indica and Japonica rice are still unknown. In this study, we cloned a quantitative trait locus (QTL) grain Cd concentration on chromosome 7 (GCC7) responsible for differential grain Cd accumulation between two rice varieties by performing QTL analysis and map-based cloning. We found that the two GCC7 alleles, GCC7PA64s and GCC793-11 , had different promoter activity of OsHMA3, leading to different OsHMA3 expression and different shoot and grain Cd concentrations. By analyzing the distribution of different haplotypes of GCC7 among diverse rice accessions, we discovered that the high and low Cd accumulation alleles, namely GCC793-11 and GCC7PA64s , were preferentially distributed in Indica and Japonica rice, respectively. We further showed that the GCC7PA64s allele can be used to replace the GCC793-11 allele in the super cultivar 93-11 to reduce grain Cd concentration without adverse effect on agronomic traits. Our results thus reveal that the QTL GCC7 with sequence variation in the OsHMA3 promoter is an important determinant controlling differential grain Cd accumulation between Indica and Japonica rice.


Assuntos
Cádmio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Oryza/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 609-12, 2015 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-26117864

RESUMO

Cotton is one of the important oil crops, and it is great significance for screening and identification of breeding materials to establish a method of the rapid, nondestructive testing of cotton seed oil content. In this study, near-infrared diffuse reflection spectroscopy of 118 high and low oil materials were adopted to establish models for fast nondestructive determining oil content of cottonseed using near infrared spectroscopy (NIR). One hundred and six cottonseed samples as calibration set that covered the range of seed oil content for upland cotton were used in this experiment. The spectral data of cottonseed were processed using the first derivative and multiplicative scatter correction (MSC). The correction NIR model of oil content was built based on partial least squares (PLS) method with the spectral regions 5 446-8 848 cm(-1) and main components (5). The determination coefficient (R2) of calibration model was 0.975, standard error of calibration (SEC) was 0.67. The authors test the model's actual ability to predict using external validation set. The correlation coefficient (r) of predicted values and the chemistry value was 0.978, the range of prediction error was 0.1% - 1.7%. The model established has good predictability. The oil content of 784 breeding stocks were predicted by NIR model, statistical analysis of predictable. results elucidated that the NIR model of oil content developed can be well applied to selective breeding and oil related study in cotton.


Assuntos
Óleo de Sementes de Algodão/química , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...