Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 186(1): 44, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607598

RESUMO

Both pure and Mn(II)-doped ZnO hollow structures were synthesized by a solvothermal reaction, and their phase structures, morphologies and elemental composition were characterized. SEM and TEM observations show the pure ZnO and the Mn(II)-doped ZnO balls to possess similar hollow structure with a particle size of about 1.5 µm. Their sensing properties were investigated, and the composite containing 1 atom% of Mn(II) (1% Mn-ZnO) is found be display the highest selectivity for acetone. The detection limit is 100 ppm acetone at 234 °C which is 4.6 times lower than that of the pure ZnO. In addition, the response time is shorter. Graphical abstract ZnO and Mn-doped ZnO hollow balls were prepared by a hydrothermal method, and their gas-sensing properties were investigated. Zinc(II) oxide doped with 1 atom% Mn(II) demonstrated an outstanding sensing behavior towards acetone vapors.

2.
Dalton Trans ; 47(42): 15181-15188, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30321249

RESUMO

Fe-Doped NiO multi-shelled microspheres have been synthesized via a facile hydrothermal reaction. Various characterization techniques were introduced to investigate the structure and morphology of the as-prepared Fe-doped NiO multi-shelled microspheres. SEM and TEM observations showed that NiO microspheres are about 500 nm in diameter and with three shells. The Fe-doped NiO multi-shelled microspheres were investigated systematically as gas sensing materials for chemiresistive semiconductor-based gas sensors. The results showed that the 1.92 at% Fe-doped NiO (1.92Fe-NiO) multi-shelled microspheres exhibited enhanced gas sensing performance compared to the pure NiO multi-shelled microspheres. The gas response of 1.92Fe-NiO multi-shelled microspheres to 100 ppm butanol was 45.1 at 140 °C, which revealed a remarkable improvement over the pure NiO multi-shelled microspheres (6.80). The increased response of 1.92Fe-NiO multi-shelled microspheres may be attributed to the incorporation of Fe ions into NiO nanocrystals, which adjusted the carrier concentration and caused an increase in the oxygen species on the adsorbed surface. Therefore, the Fe-doped NiO multi-shelled microspheres should be a promising material for high performance butanol gas sensors.

3.
ACS Appl Mater Interfaces ; 10(17): 15314-15321, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29652469

RESUMO

Multishell, stable, porous metal-oxide microspheres (Ni-Co oxides, Co3O4 and NiO) have been synthesized through the amorphous coordination polymer-based self-templated method. Both oxides of Ni and Co show poor selectivity to xylene, but the composite phase has substantial selectivity (e.g., Sxylene/ Sethanol = 2.69) and remarkable sensitivity (11.5-5 ppm xylene at 255 °C). The short response and recovery times (6 and 9 s), excellent humidity-resistance performance (with coefficient of variation = 11.4%), good cyclability, and long-term stability (sensitivity attenuation of ∼9.5% after 30 days and stable sensitivity thereafter) all show that this composite is a competitive solution to the problem of xylene sensing. The sensing performances are evidently due to the high specific surface area and the nano-heterostructure in the composite phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...