Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067652

RESUMO

The flotation agent is an important collector in the production of potassium chloride and is brought into the crystallization stage with the reflux of the mother liquor. Octadecylamine Hydrochloride (ODA), 1-Dodecylamine Hydrochloride (DAH) and Sodium 1-dodecanesulfonate (SDS) were selected to study their effect on the nucleation of potassium chloride. Focused Beam Reflectance Measurement was used to collect the nucleation-induced periods of KCl in the presence of flotation agents at different supersaturations. Then, empirical equations, classical nucleation theory and growth mechanism equations were employed for data analysis. It was found that the presence of flotation agents increased the nucleation sequence m, and m(ODA) > m(SDS) > m(DAH) > m(H2O). In addition, the interfacial energy data obtained using classical nucleation theory suggest that the flotation agents used in our paper promoted the homogeneous nucleation of KCl (reduced from 5.3934 mJ·m-2 to 5.1434 mJ·m-2) and inhibited the heterogeneous nucleation of KCl (increased from 2.8054 mJ·m-2 to 3.6004 mJ·m-2). This investigation also revealed that the growth of potassium chloride was consistent with the 2D nucleation-mediated growth mechanism, and the addition of flotation agent did not change the growth mechanism of potassium chloride. Finally, the particle size distribution results were exactly consistent with the order of nucleation order m. The study of nucleation kinetics and growth mechanisms of different flotation agents on potassium chloride can provide guidance for optimizing the production process of potassium chloride and developing new flotation agents.

2.
Small ; 18(51): e2205010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328738

RESUMO

Commercial masks have significant drawbacks, including low water vapor transmission efficiency and limited ability to inhibit harmful microorganisms, whereas in this contribution, a series of Janus microsphere membranes are developed with hierarchical structures by quenching and crystallizing 12-hydroxystearic acid and halicin layer-by-layer on a polypropylene non-woven fabric, laminating them with hydrophilic cotton fibers in a one-pot process, and further demonstrate the potential of this composite system as masks. Through further optimization, excellent superhydrophobic/superhydrophilic properties (contact angle 157.1°/0°), superior filtering effects (93.54% for PM2.5 and 98.35% for PM10 ), with a low-filtration resistance (57 Pa) and a quality factor of up to 0.072 Pa-1 are achieved, all better than that of commercial N95 masks. In addition, the membrane allows for the directional transport of water vapor from the inside out, increasing the water vapor transmission rate by more than 20% compared with the monolayer hydrophobic microsphere membrane. It also has a bactericidal capacity of over 99.9999% against Escherichia coli and is tested for robustness and stability in various extreme environments. This work may shed light on designing novel filter media with versatile functions, meanwhile, the materials can also be used in protective equipment against the new coronavirus.


Assuntos
Material Particulado , Vapor , Material Particulado/análise , Microesferas , Filtração , Esterilização
3.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807330

RESUMO

The metastable zone width (MSZW) of p-methoxybenzoic acid (PMBA) in an ethanol-water system was measured using the polythermal method. The nucleation order m obtained by the Nývlt's model indicates the nucleation of PMBA following a progressive nucleation mechanism at low saturation temperature (m = 3.18-7.50) and an instantaneous nucleation mechanism at high saturation temperature (m = 1.46-2.55). Then, combined with the metastable zone experiment and the Sangwal model, we found that the MSZW and the interfacial energy reached the maximum when the mass fraction of ethanol was 0.8, which resulted in the smallest crystal product size. Meanwhile, the maximum rcrit and ΔGcrit obtained based on the modified Sangwal model indicating the PMBA needs to overcome a higher nucleation barrier in the ethanol mass fraction of 0.8. Finally, we proposed a preferential strategy for adjusting MSZW by correlating the interfacial energy with the change in ethanol mass fraction, saturation temperature, and cooling rate, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...