Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chem Sci ; 15(9): 3349-3356, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425541

RESUMO

Luteodienoside A is a novel glycosylated polyketide produced by the Australian fungus Aspergillus luteorubrus MST-FP2246, consisting of an unusual 1-O-ß-d-glucopyranosyl-myo-inositol (glucinol) ester of 3-hydroxy-2,2,4-trimethylocta-4,6-dienoic acid. Mining the genome of A. luteorubrus identified a putative gene cluster for luteodienoside A biosynthesis (ltb), harbouring a highly reducing polyketide synthase (HR-PKS, LtbA) fused at its C-terminus to a carnitine O-acyltransferase (cAT) domain. Heterologous pathway reconstitution in Aspergillus nidulans, substrate feeding assays and gene truncation confirmed the identity of the ltb cluster and demonstrated that the cAT domain is essential for offloading luteodienoside A from the upstream HR-PKS. Unlike previously characterised cAT domains, the LtbA cAT domain uses glucinol as an offloading substrate to release the product from the HR-PKS. Furthermore, the PKS methyltransferase (MT) domain is capable of catalysing gem-dimethylation of the 3-hydroxy-2,2,4-trimethylocta-4,6-dienoic acid intermediate, without requiring reversible product release and recapture by the cAT domain. This study expands the repertoire of polyketide modifications known to be catalysed by cAT domains and highlights the potential of mining fungal genomes for this subclass of fungal PKSs to discover new structurally diverse secondary metabolites.

2.
ACS Omega ; 8(41): 38406-38417, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867661

RESUMO

The increasing antibiotic resistance of Mycobacterium tuberculosis and pathogenic nontuberculosis mycobacteria highlights the urgent need for new prevention and treatment strategies. Recently, the cocrystal structure of a Mycobacterium smegmatis flavin-independent 5,10-methylenetetrahydrofolate reductase (MsmMTHFR) that binds with a reduced nicotinamide adenine dinucleotide (NADH) has been well-determined, providing a structural basis for the screening of antimycobacterial leads targeting MsmMTHFR, a new enzyme involved in tetrahydrofolic acid (THF) biosynthesis. In this study, we identified compound AB131 as a promising candidate that fits well into the NADH binding pocket of MsmMTHFR through virtual screening. We discovered that AB131 and its derivatives (13 and 14) can sensitize the antimycobacterial activity of the antitubercular drug para-aminosalicyclic acid (PAS) by 2-5-fold against various species of mycobacteria. Although the compounds themselves do not exhibit any antimycobacterial activity, the high binding affinity of AB131 with MsmMTHFR or Rv2172c was evaluated by microscale thermophoresis analysis. Additionally, we predicted and validated the key residues (V115, V117, P118, and R163) of MsmMTHFR that are involved in the interaction with AB131 by using molecular docking and mutagenesis analysis. These findings offer a potential exploitable target for developing potent and specific antimycobacterial drug sensitizers.

3.
Biochem J ; 480(14): 1129-1146, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435857

RESUMO

5,10-Methylenetetraydrofolate reductase (MTHFR) is a key enzyme in folate metabolism. MSMEG_6649, a non-canonical MTHFR from Mycobacterium smegmatis, was previously reported as a monomeric protein lacking the flavin coenzyme. However, the structural basis for its unique flavin-independent catalytic mechanism remains poorly understood. Here, we determined the crystal structures of apo MTHFR MSMEG_6649 and its complex with NADH from M. smegmatis. Structural analysis revealed that the groove formed by the loops 4 and 5 of non-canonical MSMEG_6649 interacting with FAD was significantly larger than that of canonical MTHFR. Meanwhile, the NADH-binding site in MSMEG_6649 is highly similar to the FAD binding site in canonical MTHFR, suggesting that NADH plays the same role (immediate hydride donor for methylenetetraydrofolate) as FAD in the catalytic reaction. Using biochemical analysis, molecular modeling, and site-directed mutagenesis, the critical residues participating in the binding of NADH and the substrate 5,10-methylenetetrahydrofolate as well as the product 5-methyltetrahydrofolate were identified and validated. Taken together, this work not only provides a good starting point for understanding the potential catalytic mechanism for MSMEG_6649, but also identifies an exploitable target for the development of anti-mycobacterial drugs.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , NAD , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , NAD/metabolismo , Oxirredutases , Coenzimas , Flavinas
4.
Microbiol Spectr ; 11(3): e0008023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37162357

RESUMO

The composition and structure of fungal communities on healthy and diseased fruits of Cinnamomum burmannii (Nees and Nees) Blume were characterized, with evaluation of the antibacterial activity of secondary metabolites from culturable fungi following the first identification of secondary metabolites in the fungus Medicopsis romeroi (Esf-14; GenBank accession number OK242756). These results are significant for understanding the functional variation in bioactivity in fungal communities and developing a broader range of bioactive resources. High-throughput sequencing results indicated that the fungal community in diseased fruit differed from that in healthy fruit at the phylum, class, order, or genus level, with significant differences in the species and relative abundance of the dominant flora. A total of 49 (healthy fruit) and 122 (diseased fruit) artificially cultivable endophytic fungi were isolated, and 41 different strains (11 from healthy fruit and 30 from diseased fruit) were successfully identified by morphological and molecular biological analyses, which were classified into 8 groups and 23 genera by phylogenetic tree analysis, with Pleosporales, Glomerellales, and Hypocreales being the dominant groups at the order level and Colletotrichum being the dominant group at the genus level. The results of the antibacterial assay demonstrated that the secondary metabolites of all strains had different degrees of antibacterial activity, while the secondary metabolites of endophytic fungi from diseased fruit were generally stronger than those of fungi from healthy fruit, with the active secondary metabolites dominated by small and moderately polar compounds. Combined analysis of fungal communities, phylogenetic tree analysis, and bioactivity analysis of culturable strains revealed strong antibacterial activity of both upregulated and downregulated flora in diseased fruit. Five compounds, including two new (5,6-dimethoxy-[1',1:4,1″-terphenyl]-2-ol [compound 1] and 5-(methoxycarbonyl)-2-methylbenzo[d][1,3]dioxole-2-carboxylic acid [compound 2]) and three known compounds (3,7-dihydroxy-1,9-dimethyldibenzofuran [compound 3], methyl 3-hydroxybenzoate [compound 4], and uracil [compound 5]), were isolated and identified for the first time from the endophytic fungus Medicopsis romeroi. In general, the diversity of fungal communities on diseased fruit was lower than that on healthy fruits, while the antibacterial activity of artificially cultured endophytic fungi on diseased fruits was generally stronger than that on healthy fruits, suggesting excellent promise for the development of secondary metabolites from active strains on diseased fruit as antibacterial agents. IMPORTANCE Powdery fruit disease is a notorious disease of Cinnamomum burmannii that causes severe loss in fruit production. Studies on the function of endophytic fungal communities in healthy plant tissues are not new, while little is known about the functional changes of fungal communities in disease-causing plant tissues. Our results demonstrate that fungal communities in diseased fruits differ from those in healthy fruits at the level of phylum, class, order, or genus, with significant differences in the species and relative abundance of dominant groups. Endophytic fungi in diseased fruits appeared to produce secondary metabolites with stronger antibacterial properties, although the community diversity was not as varied as that in healthy fruits. In addition, secondary metabolites of the Medicopsis romeroi strain from diseased fruits were identified for the first time. These results have important implications for understanding the functional variation of bioactivity in fungal communities and for developing a broader resource of bioactivity.


Assuntos
Ascomicetos , Micobioma , Frutas , Filogenia , Endófitos , Fungos/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo
5.
J Mycol Med ; 33(2): 101381, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37037064

RESUMO

BACKGROUND: Infections caused by azole-resistant Aspergillus are a rising public health threat with high mortality rates, high treatment costs and limited available antifungals, indicating an urgent need for new antifungals or strategies. Our aim was to investigate antifungal and antibiofilm activities of auranofin, an FDA-approved anti-antirheumatic drug. METHODS: Fungal susceptibility testing for auranofin was carried out by the broth-based microdilution methods. Cell viability treated by auranofin was tested by resazurin dye testing. The synergistic effect of auranofin and antifungal drugs was evaluated using checkboard assay. The inhibitory of biofilms were measured by crystal violet staining. Gene expression level analysis and enzyme activity was investigated with qRT-PCR analysis and DTNB assay. The key amino acid residues in the binding of auranofin with A. fumigatus thioredoxin reductase (AfTrxR) were indicated by structural analyses, site-directed mutagenesis, and microscale thermophoresis (MST) assays. RESULTS: Auranofin has fungicidal activity and in vitro antifungal spectrum including Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger, even itraconazole (ITC)-resistant A. fumigatus. Additionally, it has antibiofilm activities against ITC-resistant A. fumigatus by reducing the expression level of SomA and MedA. Moreover, we discovered a synergistic effect of auranofin and ITC or amphotericin B against ITC-resistant A. fumigatus. Auranofin downregulated the gene transcription of AfTrxR, and strongly inhibited the enzyme activity of AfTrxR through interacting with residues C145 and C148. CONCLUSIONS: Auranofin has fungicidal and antibiofilm activities in Aspergillus spp. and is also a potentiator of ITC or amphotericin B in vitro.


Assuntos
Antifúngicos , Itraconazol , Antifúngicos/farmacologia , Itraconazol/farmacologia , Aspergillus fumigatus/genética , Anfotericina B/farmacologia , Auranofina/farmacologia , Voriconazol/farmacologia , Triazóis/farmacologia , Testes de Sensibilidade Microbiana
6.
ACS Chem Biol ; 18(3): 508-517, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926816

RESUMO

Class III lanthipeptides are an emerging subclass of lanthipeptides, representing an underexplored trove of new natural products with potentially broad chemical diversity and important biological activity. Bioinformatic analysis of class III lanthipeptide biosynthetic gene cluster (BGC) distribution has revealed their high abundance in the phylum Firmicutes. Many of these clusters also feature methyltransferase (MT) genes, which likely encode uncommon class III lanthipeptides. However, two hurdles, silent BGCs and low-yielding pathways, have hindered the discovery of class III lanthipeptides from Firmicutes. Here, we report the design and construction of a biosynthetic pathway refactoring and heterologous overexpression strategy which seeks to overcome these hurdles, simultaneously activating and increasing the production of these Firmicutes class III lanthipeptides. Applying our strategy to MT-containing BGCs, we report the discovery of new class III lanthipeptides from Firmicutes bearing rare N,N-dimethylations. We reveal the importance of the first two amino acids in the N-terminus of the core peptide in controlling the MT dimethylation activity. Leveraging this feature, we engineer class III lanthipeptides to enable N,N-dimethylation, resulting in significantly increased antibacterial activity. Furthermore, the refactoring and heterologous overexpression strategy showcased in this study is potentially applicable to other ribosomally synthesized and post-translationally modified peptide BGCs from Firmicutes, unlocking the genetic potential of Firmicutes for producing peptide natural products.


Assuntos
Bacteriocinas , Produtos Biológicos , Bacteriocinas/genética , Bacteriocinas/química , Firmicutes/genética , Firmicutes/metabolismo , Peptídeos/química , Família Multigênica
7.
Front Microbiol ; 13: 1045291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578570

RESUMO

The growing threat of antibiotic-resistant bacterial infections to public health necessitates the development of novel antibacterial agents. Inhibiting bacterial cell wall synthesis has remained a key focus for antibiotic development. Our search for inhibitors of undecaprenyl diphosphate synthase (UPPS), an essential enzyme required for bacterial cell wall formation, revealed that two primary components of gamboge, gambogic acid (GA) and neogambogic acid (NGA), significantly inhibited the activity of Enterococcus faecalis UPPS (EfaUPPS) with the half maximal inhibitory concentrations (IC50) of 3.08 µM and 3.07 µM, respectively. In the in vitro antibacterial assay, both GA and NGA also exhibited inhibitory activities against E. faecalis with the minimal inhibitory concentrations (MICs) of 2 µg/mL. Using microscale thermophoresis, molecular docking, and enzymatic assays, we further confirmed that GA and NGA occupy the substrate binding pocket of EfaUPPS with micro-molar binding affinity, preventing the natural substrates farnesyl diphosphate (FPP) from entering. Mutagenesis analysis revealed that L91 and L146 are two key residues in the binding between GA/NGA and UPPS. Furthermore, we also demonstrated that GA and NGA can improve E. faecalis-induced undesirable inflammation in a mouse infection model. Taken together, our findings provide a basis for structural optimization of GA/NGA to develop improved antibiotic leads and enhance treatment success rates in clinical practice.

8.
Glob Heart ; 17(1): 83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578919

RESUMO

Background: Cardiac rehabilitation (CR) is a multidisciplinary medical program. Most studies have emphasized the effect of exercise-based CR in lowering lipid levels; however, the effect of CR as a comprehensive program on lipid levels remains unclear. Methods: Electronic database were searched up to 2022. Randomized controlled trials with lipid profile indicators were included. Standardized mean differences (SMDs) and 95% CIs were used to evaluate the effect size. Begg's funnel plot and Egger's linear regression test were used to assess publication bias. Results: CR remarkably reduced low-density lipoprotein cholesterol (LDL-C) levels (SMD = -0.23; 95%CI: [-0.38, -0.08]; P < 0.001), triglyceride (TG) levels (SMD = -0.17; 95%CI: [-0.28, -0.06]; P < 0.001), and total cholesterol (TC) levels (SMD = -0.30; 95%CI: [-0.43, -0.16]; P < 0.001) and increased high-density lipoprotein cholesterol (HDL-C) levels (SMD = 0.19; 95%CI: [0.10, 0.29]; P < 0.001). Conclusions: CR reduce TC, TG, and LDL-C levels while improving HDL-C levels. CR should be promoted and more trials should be conducted for long-term CR.


Assuntos
Reabilitação Cardíaca , Doença das Coronárias , Humanos , Triglicerídeos , LDL-Colesterol , HDL-Colesterol
9.
Nucleic Acids Res ; 50(10): 5974-5987, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641097

RESUMO

Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Fator de Transcrição AraC/genética , Fator de Transcrição AraC/metabolismo , Proteínas de Bactérias/metabolismo , Citarabina/metabolismo , DNA/química , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ativação Transcricional
10.
Nat Commun ; 13(1): 1647, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347143

RESUMO

Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.


Assuntos
Genoma Bacteriano , Peptídeo Hidrolases , Bactérias , Endopeptidases , Genoma Bacteriano/genética , Peptídeo Hidrolases/genética , Especificidade por Substrato
11.
Front Plant Sci ; 12: 780970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917113

RESUMO

Monoterpenoids are the main components of plant essential oils and the active components of some traditional Chinese medicinal herbs like Mentha haplocalyx Briq., Nepeta tenuifolia Briq., Perilla frutescens (L.) Britt and Pogostemin cablin (Blanco) Benth. Pulegone reductase is the key enzyme in the biosynthesis of menthol and is required for the stereoselective reduction of the Δ2,8 double bond of pulegone to produce the major intermediate menthone, thus determining the stereochemistry of menthol. However, the structural basis and mechanism underlying the stereoselectivity of pulegone reductase remain poorly understood. In this study, we characterized a novel (-)-pulegone reductase from Nepeta tenuifolia (NtPR), which can catalyze (-)-pulegone to (+)-menthone and (-)-isomenthone through our RNA-seq, bioinformatic analysis in combination with in vitro enzyme activity assay, and determined the structure of (+)-pulegone reductase from M. piperita (MpPR) by using X-ray crystallography, molecular modeling and docking, site-directed mutagenesis, molecular dynamics simulations, and biochemical analysis. We identified and validated the critical residues in the crystal structure of MpPR involved in the binding of the substrate pulegone. We also further identified that residues Leu56, Val282, and Val284 determine the stereoselectivity of the substrate pulegone, and mainly contributes to the product stereoselectivity. This work not only provides a starting point for the understanding of stereoselectivity of pulegone reductases, but also offers a basis for the engineering of menthone/menthol biosynthetic enzymes to achieve high-titer, industrial-scale production of enantiomerically pure products.

12.
Org Lett ; 23(22): 8789-8793, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34747627

RESUMO

Activation of a cryptic polyketide synthase gene cluster hkn from Aspergillus hancockii via overexpression of the gene-cluster-specific transcription factor HknR led to the discovery of a novel polycyclic metabolite, which we named hancockinone A. The compound features an unprecedented prenylated 6/6/6/5 tetracarbocyclic skeleton and shows moderate antibacterial activity. Heterologous expression, substrate feeding, and in vitro assays confirmed the role of cytochrome P450 HknE in constructing the five-membered ring in hancockinone A from the precursor neosartoricin B.


Assuntos
Policetídeos
13.
Biochem Biophys Res Commun ; 583: 86-92, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34735884

RESUMO

Stringent starvation protein A (SspA) involved in nucleotide metabolism, acid tolerance and virulence of bacteria has been demonstrated to function as a transcription factor to regulate σ70-dependent gene transcription through interacting with σ70 region 4 and the zinc binding domain (ZBD) of E. coli RNA polymerase (EcoRNAP) ß' subunit simultaneously. Despite extensive biochemical and structural analyses were reported recently, the interactions of SspA with RNAP are not comprehensively understood. Here, we reprocessed our previous cryo-EM dataset of EcoRNAP-promoter open complex with SspA (SspA-RPo) and obtained a significantly improved density map. Unexpectedly, the new map showed that SspA interacts with both N-terminal helix of ß' subunit (ß'ΝΤΗ) and ω subunit, which contributes to stabilize the SspA-EcoRNAP σ70 holoenzyme complex. Sequence alignments and phylogenetic tree analyses of N-terminal sequences of ß' subunit from different classes of bacteria revealed that ß'ΝΤΗ is highly conserved and exclusively found in low-GC-content Gram-negative bacteria that harbor SspA, implying a co-evolution of ß'ΝΤΗ and SspA. The transcription assays of wild-type SspA and its mutants demonstrated the interaction between SspA and ß'ΝΤΗ facilitates the transcription regulation of SspA. Together, our results provide a more comprehensive insight into the interactions between SspA and RNAP and their roles in bacterial transcription regulation.

14.
Bioorg Chem ; 112: 104925, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022708

RESUMO

Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.


Assuntos
Aciltransferases/metabolismo , Anti-Infecciosos/química , Proteínas de Bactérias/metabolismo , Resorcinóis/química , Aciltransferases/antagonistas & inibidores , Aciltransferases/classificação , Aciltransferases/genética , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , COVID-19/patologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Resorcinóis/isolamento & purificação , Resorcinóis/metabolismo , Resorcinóis/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Streptomyces/enzimologia , Espectrometria de Massas em Tandem
15.
J Nat Prod ; 84(5): 1425-1433, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33882233

RESUMO

Toads produce potent toxins, named bufadienolides, to defend against their predators. Pharmacological research has revealed that bufadienolides are potential anticancer drugs. In this research, we reported nine bufadienolides from the eggs of the toad Bufo bufo gargarizans, including two new compounds (1 and 3). The chemical structures of 1 and 3, as well as of one previously reported semisynthesized compound (2), were elucidated on the basis of extensive spectroscopic data interpretation, chemical methods, and X-ray diffraction analysis. Compound 1 is an unusual 19-norbufadienolide with rearranged A/B rings. A biological test revealed that compounds 2 and 4-8 showed potent cytotoxic activities toward human melanoma cell line SK-MEL-1 with IC50 values less than 1.0 µM. A preliminary mechanism investigation revealed that the most potent compound, 8, could induce apoptosis via PARP cleavage, while 5 and 6 significantly suppressed angiogenesis in zebrafish. Furthermore, an in vivo biological study showed that 5, 6, and 8 inhibit SK-MEL-1 cell growth significantly.


Assuntos
Antineoplásicos/farmacologia , Bufo bufo , Melanoma/tratamento farmacológico , Óvulo/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Peixe-Zebra
16.
J Nat Prod ; 84(5): 1638-1648, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33899471

RESUMO

While marine natural products have been investigated for anticancer drug discovery, they are barely screened against rare cancers. Thus, in our effort to discover potential drug leads against the rare cancer pseudomyxoma peritonei (PMP), which currently lacks effective drug treatments, we screened extracts of marine actinomycete bacteria against the PMP cell line ABX023-1. This effort led to the isolation of nine rearranged angucyclines from Streptomyces sp. CNZ-748, including five new analogues, namely, grincamycins P-T (1-5). The chemical structures of these compounds were unambiguously established based on spectroscopic and chemical analyses. Particularly, grincamycin R (3) possesses an S-containing α-l-methylthio-aculose residue, which was discovered in nature for the first time. All of the isolated compounds were evaluated against four PMP cell lines and some exhibited low micromolar inhibitory activities. To identify a candidate biosynthetic gene cluster (BGC) encoding the grincamycins, we sequenced the genome of the producing strain, Streptomyces sp. CNZ-748, and compared the BGCs detected with those linked to the production of angucyclines with different aglycon structures.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Pseudomixoma Peritoneal/tratamento farmacológico , Streptomyces/química , Antraquinonas/isolamento & purificação , Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , California , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sedimentos Geológicos/microbiologia , Humanos , Estrutura Molecular , Família Multigênica , Streptomyces/genética
17.
Biochem Biophys Res Commun ; 545: 98-104, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33548630

RESUMO

A large class of bacterial RNA polymerase (RNAP) from low-G + C-content Gram-positive bacterial strains, such as the major human pathogen Staphylococcus aureus, not only contain five conserved subunits (αI, αII, ß, ß' and ω), but also has a δ subunit. Despite being first identified as unique, Gram-positive specific component of RNAP apoenzyme more than 30 years ago and reported to be essential for transcription, the structural basis and molecular mechanism of δ subunit in the regulation of transcription remain poorly understood. Here, we performed structural analyses, site-directed mutagenesis and biochemical assays to uncover the interactions of S. aureus δ subunit with RNAP core enzyme and DNA towards the understanding of its role in transcription regulation. Microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA) of the wild-type and mutated S. aureus δ subunit revealed the N-terminal domain of δ subunit directly binds to the ß' jaw of S. aureus RNAP (SauRNAP), identified the key amino acid residues (F58, D61, D65, R67 and W81) of δ subunit involving in the binding with SauRNAP core enzyme, and uncovered the δ subunit C-terminal domain interferes with the interaction between DNA and SauRNAP core enzyme, by which transcription is regulated. Our results provide an excellent starting point for understanding the unique regulatory role and physiological function of δ subunit on transcription regulation in Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Genes Bacterianos , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/genética , Transcrição Gênica
19.
Front Microbiol ; 11: 590330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224125

RESUMO

The transcription repressor of D-galactonate metabolism, DgoR, from Escherichia coli belongs to the FadR family of the GntR superfamily. In the presence of D-galactonate, DgoR binds to two inverted repeats overlapping the dgo cis-acting promoter repressing the expression of genes involved in D-galactonate metabolism. To further understand the structural and molecular details of ligand and effector interactions between D-galactonate and this FadR family member, herein we solved the crystal structure of C-terminal domain of DgoR (DgoR_C), which revealed a unique divalent metal-containing substrate binding pocket. The metal ion is required for D-galactonate binding, as evidenced by the dramatically decreased affinity between D-galactonate and DgoR in the presence of EDTA, which can be reverted by the addition of Zn2+, Mg2+, and Ca2+. The key amino acid residues involved in the interactions between D-galactonate and DgoR were revealed by molecular docking studies and further validated with biochemical studies by site-directed mutagenesis. It was found that changes to alanine in residues R102, W181, T191, and R224 resulted in significantly decreased binding affinities for D-galactonate, as determined by EMSA and MST assays. These results suggest that the molecular modifications induced by a D-galactonate and a metal binding in the DgoR are required for DNA binding activity and consequently, transcriptional inhibition.

20.
Angew Chem Int Ed Engl ; 59(45): 19868-19872, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32725837

RESUMO

The development of novel antibiotics is critical to combating the growing emergence of drug-resistant pathogens. Malacidin A is a new member of the calcium-dependent antibiotic (CDAs) family with activity against antibiotic-resistant pathogens. Its mode of action is distinct from classical CDAs. However, the absolute structure of malacidin A has not been established. Herein, the total syntheses of malacidin A and its analogues are reported by a combination of Fmoc-based solid-phase peptide synthesis (SPPS) and ß-hydroxyaspartic acid ligation-mediated peptide cyclization. The total synthesis enabled us to establish the absolute configuration of malacidin A, which is in agreement with those for natural malacidin A confirmed by advanced Marfey's analysis in our study.


Assuntos
Ácido Aspártico/análogos & derivados , Ciclização , Lipopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Ácido Aspártico/química , Estrutura Molecular , Técnicas de Síntese em Fase Sólida , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...