Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1159798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457962

RESUMO

The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.


Assuntos
Enterococcus faecium , Infecções Estafilocócicas , Humanos , Percepção de Quorum , Antibacterianos , Virulência , Infecções Estafilocócicas/microbiologia
2.
Methods Mol Biol ; 2489: 459-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524065

RESUMO

Chromatography techniques facilitate separation, purification, and identification of secondary compounds (natural products) in lichens and their mycobiont cultures. In particular, high-performance liquid chromatography (HPLC) plays a vital role in the identification of lichen substances because of its high sensitivity, speed, and reliability with the minimal sample. Therefore, we describe the extraction and HPLC protocol for the investigation of secondary compounds with a special focus on lichen mycobiont cultures.


Assuntos
Produtos Biológicos , Líquens , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes
3.
Arch Microbiol ; 204(1): 90, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34962612

RESUMO

The choice of inoculum for successful isolation and establishment of axenic lichen mycobiont culture is a key step towards eliminating endolichenic and lichenicolous fungi and other microbial contamination. The nutritional requirements of each lichen species are unique. This work reports on the isolation, phenotypic plasticity, growth and secondary metabolites from mycobiont culture of the pantropical lichen Platygramme caesiopruinosa. Media composition [Malt yeast extract (MY), Modified Murashige and Skoog (MMS) and Lilly and Barnett (LB) media] was optimized to determine nutritional requirements for optimal growth of this species as assessed by dry biomass and the occurrence of secondary metabolite. Furthermore, the role of different carbon sources in affecting growth, growth stages, phenotypic plasticity, biomass and spectrum of secondary metabolites produced of this mycobiont was examined. The molecular identity of the mycobiont culture was confirmed by amplifying mitochondrial small subunit (mtSSU) sequences. Cultures showed optimum biomass production in MY medium with 10% sucrose. The secondary metabolite profiles for each culture treatment were characterized using High-performance Thin-Layer Chromatography (HPTLC) and Gas Chromatography with Mass Spectrometric (GC-MS) analysis. The HPTLC spectral comparison, phenolic and iodine confirmatory analysis revealed the absence of phenolic metabolites and the presence of non-phenolic metabolites in mycobiont extracts, while GC-MS analysis revealed the biosynthesis of side chain fatty acids, hydrocarbons and sugar alcohol in mycobiont cultures treated with 10% supplemented sucrose as a carbon source.


Assuntos
Ascomicetos , Líquens , Adaptação Fisiológica , Meios de Cultura
4.
Nat Prod Res ; 34(23): 3320-3327, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30798639

RESUMO

The metabolites of the mycobiont culture of the lichen Trypethelium eluteriae were isolated by column chromatography and preparative TLC. Nine compounds (1-9) including two new trypethelones, 8-methoxytrypethelone (6) and 5'-hydroxy-8-ethoxytrypethelone (9), together with four known trypethelones (3-4, 7-8), and two known phenalenones (1-2) were characterized. It is the first report of 8-methoxytrypethelone methyl ether (5) purification as a racemic mixture in T. eluteriae. Earlier, 7-hydroxyl-8-methoxyltrypethelone (10) was reported as new compound with erroneous spectroscopic data. This compound was identified later as 8-hydroxytrypethelone methyl ether (4). X-ray crystallographic structures of compounds 5-7 were elucidated for the first time. Phenalenones (1-2) and trypethelones (5-6 and 9) were the additional compounds discovered in the cultured mycobiont of T. eluteriae. Six compounds (1-2, 5-8) were screened against Mycobacterium tuberculosis H37Rv and two compounds (7-8) against non-tuberculosis mycobacteria and other human pathogenic bacteria. Compound (7) inhibited M. tuberculosis H37Rv strain with an MIC of 12.5 µg/mL.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Ascomicetos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Fenalenos/farmacologia , Policetídeos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/metabolismo , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Líquens , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Micobactérias não Tuberculosas/efeitos dos fármacos , Fenalenos/química , Fenalenos/isolamento & purificação , Policetídeos/química , Policetídeos/isolamento & purificação
5.
Front Microbiol ; 10: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792699

RESUMO

Studies using whole genome sequencing, computational and gene expression, targeted genome engineering techniques for generating site-specific sequence alterations through non-homologous end joining (NHEJ) by genomic double-strand break (DSB) repair pathway with high precision, resulting in gene inactivation have elucidated the complexity of gene expression, and metabolic pathways in fungi. These tools and the data generated are crucial for precise generation of fungal products such as enzymes, secondary metabolites, antibiotics etc. Artificially engineered molecular scissors, zinc finger nucleases (ZFNs), Transcriptional activator-like effector nucleases (TALENs; that use protein motifs for DNA sequence recognition in the genome) and CRISPR associated protein 9 (Cas9;CRISPR/Cas9) system (RNA-DNA recognition) are being used in achieving targeted genome modifications for modifying traits in free-living fungal systems. Here, we discuss the recent research breakthroughs and developments which utilize CRISPR/Cas9 in the metabolic engineering of free-living fungi for the biosynthesis of secondary metabolites, enzyme production, antibiotics and to develop resistance against post-harvest browning of edible mushrooms and fungal pathogenesis. We also discuss the potential and advantages of using targeted genome engineering in lichenized fungal (mycobiont) cultures to enhance their growth and secondary metabolite production in vitro can be complemented by other molecular approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...