Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38440860

RESUMO

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Assuntos
Fator de Iniciação 2 em Eucariotos , Exorribonucleases , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo
2.
Biochim Biophys Acta ; 1843(9): 1948-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24732012

RESUMO

The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.


Assuntos
eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Biológicos , Dados de Sequência Molecular , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , eIF-2 Quinase/química
3.
Biochem Biophys Res Commun ; 443(2): 592-7, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333428

RESUMO

In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2-GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H2O2 or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase.


Assuntos
Proteínas de Transporte/metabolismo , Sequência Conservada/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ativação Enzimática , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Proteínas de Ligação a RNA , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...